Мир дикой природы на wwlife.ru
Вы находитесь здесь:Новости>>Новости Цитологии>>Полет шмеля задействует тот же белковый механизм, что и полет птиц

Воскресенье, 25 Август 2013 23:53

Полет шмеля задействует тот же белковый механизм, что и полет птиц

Автор 

Летающие насекомые машут крыльями с чудовищной частотой: например, у комара она может достигать 500 взмахов в секунду. И довольно долго учёные пытались выяснить, как насекомым это удаётся. Можно было бы предположить, что они машут крыльями как-то иначе, чем мы, то есть позвоночные, двигаем крыльями, лапами, ногами и руками, что у насекомых работает какой-то свой механизм. Но нет. Молекулярные исследования, проведённые в научно-исследовательском институте JASRI (Япония), привели к неожиданному результату: оказалось, никакого особенного «насекомого» механизма для махания крыльями нет, механика тут та же, что и в наших с вами мышцах. 

Схема строения мышечного волокна: в момент сокращения головки на нитях миозина (толстые красные нити с лопастями на поверхности) соединяются нитями актина (тонкие серые линии). Переступая этими головками, нить миозина протягивает мимо себя нить актина. (Рисунок Shutterstock.)Схема строения мышечного волокна: в момент сокращения головки на нитях миозина (толстые красные нити с лопастями на поверхности) соединяются нитями актина (тонкие серые линии). Переступая этими головками, нить миозина протягивает мимо себя нить актина. (Рисунок Shutterstock.)Любое мышечное сокращение начинается с того, что на мышечную клетку приходит нервный импульс, который открывает в мембране мышечной клетки каналы для ионов кальция. Кальций связывается с белком тропонином, который находится в связке с нитевидным полимерным белком актином. Ионы заставляют тропонин изменить своё положение на актине так, что с ним теперь может провзаимодействовать другой белок — миозин. Длинная молекула миозина начинает изгибаться и как бы идти по нити актина; это смещение актиновых и миозиновых нитей относительно друг друга и приводит к сокращению мышцы.

Но если речь идёт о сверхчастых сокращениях, как в случае крыльев насекомых, такой механизм не работает: кальциевые насосы просто не успевали бы включать и выключать потоки ионов в ответ на нейронный импульс. И у насекомых никаких сверхчастых потоков кальциевых ионов действительно нет. После того как к мышце приходит импульс, она начинает осциллировать, то есть в ответ на один импульс производится множество сокращений. Это можно сравнить с тем, как маятник какое-то время качается по инерции от одного-единственного толчка. При этом сокращения мышц поддерживаются сами собой: чем сильнее мышца-антагонист сократится и тем самым растянет мышцу напарника, тем сильнее потом сократится вторая мышца. То есть растяжение тут стимулирует последующее сокращение. 

Этот феномен известен давно, и свойствен он тем мышцам, от которых требуются ритмичные сокращения, — например, сердцу. Но и у сердца в ритмичных сокращениях задействованы кальциевые каналы. У насекомых же они во время работы крыльев молчат. Такую особенность пытались объяснить тем, что растяжение мышцы даёт больше возможностей миозину связаться с актином. Но это одновременно предполагало и то, что тропонину не нужна кальциевая стимуляция, чтобы освободить от себя актин, а отсюда, в свою очередь, вытекало, что сократительные белки насекомых принципиально отличаются от белков позвоночных.

Хироюки Ивамото и Наото Яги проанализировали структурные изменения в мышечных белках насекомых, происходившие во время полёта. Объектом исследования послужил шмель, которого просвечивали рентгеновскими лучами, пока он махал крыльями, и всё это снимали на камеру с частотой 5 000 кадров в секунду. Учёные убедились, что у насекомых (у шмелей по крайней мере) нет никаких принципиальных модификаций молекулярного механизма мышц. Первичный нейронный импульс запускает серию сокращений, которые поддерживаются вышеописанной «активацией на растяжение»: чем сильнее растягивается мышца, тем сильнее она потом сократится. 

Единственная особенность была в том, что растяжение провоцировало структурные деформации в миозине, из-за которых он прочнее связывался с актином, что и повышало силу сокращения. В остальном же всё было так, как обычно: и кальций-зависимое поведение тропонина, и скольжение миозина и актина друг относительно друга. Иными словами, насекомые просто реализовали скрытые возможности того же самого молекулярного механизма, с помощью которого, например, птицы машут крыльями. 

Надо сказать, что попытки сделать рентгеноструктурный «портрет» летящего насекомого предпринимались неоднократно, однако получить полную информацию о работе крыльев мешало несовершенство техники. И надо было дождаться наших дней, когда появились камеры, способные делать 40 кадров на один взмах шмелиного крыла, чтобы понять, как всё-таки насекомые летают. 

Результаты исследования опубликованы в журнале Science

 


Источник: КОМПЬЮЛЕНТА


Прочитано 10313 раз

Авторизуйтесь, чтобы получить возможность оставлять комментарии

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Как птицы учат свои песни

04-12-2015 Просмотров:7592 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Как птицы учат свои песни

Нейробиологи из Массачусетского технологического института (MIT), под руководством профессора Майкла Фи (Michale Fee), разобрались, какие процессы происходят в мозгу, когда птицы учат свои песни. Результаты их исследования, опубликованные онлайн в...

Младенцы начинают мысленно разговаривать уже в 11 месяцев

16-07-2014 Просмотров:7734 Новости Антропологии Антоненко Андрей - avatar Антоненко Андрей

Младенцы начинают мысленно разговаривать уже в 11 месяцев

Физиологи выяснили, что младенцы мысленно пробуют произносить слова задолго до того, как они начинают разговаривать вслух. Открытие доказывает, что дети должны как можно чаще слушать звуки человеческой речи уже на...

Доминантные сурикаты проверяют уровень опасности на подчинённых

20-02-2013 Просмотров:10545 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Доминантные сурикаты проверяют уровень опасности на подчинённых

Зоологи из Швейцарской высшей технической школы Цюриха вместе с коллегами из Цюрихского университета наблюдали за поведением африканских сурикатов, живущих в пустыне Калахари. Там, где работали исследователи, через территорию сурикатов проходила...

Чтобы обмануть паука, хищный клоп использует «дымовую завесу»

10-09-2011 Просмотров:9616 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Чтобы обмануть паука, хищный клоп использует «дымовую завесу»

Клоп-хищнец Stenolemus bituberus питается пауками-кругопрядами, бесстрашно заходя в паутинные сети. А чтобы жертва не сбежала раньше времени, клоп принимает меры предосторожности, используя порывы ветра и тем маскируя свои перемещения по...

Насекомые приобрели обоняние, только освоив полет

31-03-2014 Просмотров:7782 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Насекомые приобрели обоняние, только освоив полет

Насекомые отличаются исключительно чувствительным обонянием, благодаря которому они не только могут по нескольким запаховым молекулам узнать, где их ждёт угощение, но и общаться друг с другом с помощью изощрённых химических...

top-iconВверх

© 2009-2025 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.