Мир дикой природы на wwlife.ru
Вы находитесь здесь:Новости>>Новости Микробиологии


Новости Микробиологии (110)

Похожие на ВИЧ вирусы впервые появились среди африканских приматов уже 12 миллионов лет назад, что свидетельствует о нескольких миллионах лет генетической "гонки вооружений" между обезьянами и подобными ретровирусами, заявляют вирусологи в статье, опубликованной в журнале PLoS Pathogens.

260113418737023"Изучив историю эволюции вирусов и приматов, мы открыли ранее неизвестный, но очень древний и все еще продолжающийся генетический "конфликт" между мартышками и вирусами. Свыше 40 видов обезьян страдают от инфекций вирусов, связанных с ВИЧ. Так как часть из них потенциально могут быть заразными для человека, нам необходимо понять, как они возникли и развиваются", — заявил один из авторов статьи Майкл Эмерман (Michael Emerman) из Центра изучения рака имени Хатчинсона в Сиэтле (США).

Эмерман и его коллега Алекс Комптон (Alex Compton) из университета штата Вашингтон в Сиэтле (США) пришли к такому выводу, сравнив геномы нескольких видов ретровирусов и их жертв — приматов из семейства мартышек (Cercopithecidae). Авторов статьи интересовали два особых участка в геномах вирусов и обезьян — ген защиты от ретровирусов A3G и подавляющий его работу участок Vif в геноме вирусов иммунодефицита.

Сравнив геномы свыше 40 видов обезьян и связанных с ними вирусов, ученые выделили различия в устройстве генов A3G и Vif и использовали эти данные для создания карты "генетической эволюции". Оказалось, что изменения в структуре данных участков ДНК приматов и вирусов происходили практически параллельно, что говорит о прямой связи между эволюцией ретровирусов и животных.

По расчетам ученых, "война" между вирусом и предками приматов началась как минимум 5-6 миллионов лет назад, судя по количеству мелких мутаций в геномах разных видов ретровирусов. Судя по некоторым различиям в структуре гена A3G у разных обезьян, данный генетический "конфликт" начался уже 12 миллионов лет назад. Долгая история эволюции вирусов, родственных ВИЧ, говорит о недооценке угрозы, который эти патогены несут человечеству, заключают авторы статьи.


Источник: РИА Новости


Специалисты из Морской биологической лаборатории (США) обнаружили любопытный экологический феномен: они нашли такие бактерии, которые живут только в водах Арктики и Антарктики — и нигде больше. С одной стороны, ничего удивительного, но давайте задумаемся, что может ограничивать бактерии в их перемещениях. Даже их сухопутные виды распространены невероятно широко, путешествуя по воздуху и с атмосферными осадками, что уж говорить о водных бактериях, которые могут дрейфовать, куда им вздумается.

Воды Арктики и Антарктики — единственное место обитания некоторых бактерий. (Фото Herb Schmitz.)Воды Арктики и Антарктики — единственное место обитания некоторых бактерий. (Фото Herb Schmitz.)Разумеется, есть виды, предъявляющие особые требования к среде обитания. Например, облигатные анаэробы живут только там, где нет кислорода. Но в данном случае речь идёт, если можно так выразиться, об «обычных» бактериях, которым, казалось бы, никаких особых условий не нужно.

Исследователи использовали данные массовой «переписи» морских бактерий, которая проводилась учёными разных стран на протяжении шести лет, с 2004 по 2010 год. Они старались охватить как можно больше экологических зон, от поверхностных слоёв воды до горячих источников на дне, от прибрежных территорий в тропиках до подлёдных вод на полюсах. Разумеется, предполагалось, что разные бактерии будут тяготеть к разным областям, разным водным массам, что распространение представляет собой сложный рисунок, а не монотонное распределение по Мировому океану. В конце концов, бактериям для оптимального роста нужны определённые температуры и кислотность среды, солевые условия и т. д.

Однако, повторим, никто не ожидал, что некоторые полярные бактерии окажутся столь привередливыми в выборе мест обитания, хотя им вроде бы ничто не мешает появляться в других местах. Можно вспомнить про течения, которые способны формировать физический, географический барьер для распространения микроорганизмов, однако авторы работы полагают, что к течениям добавляются ещё и некие геохимические препятствия, которые не пускают бактерии дальше определённого участка океана. Но что это за препятствия?.. Пока ясно лишь одно: мы всё ещё слишком мало знаем об особенностях морских экосистем, притом что от них (и в первую очередь от бактерий, в этих экосистемах обитающих) зависит, без преувеличения, здоровье всей планеты.

Результаты исследования будут опубликованы в журнале PNAS.


Источник: КОМПЬЮЛЕНТА


Группа исследователей из России и США под руководством профессора Флоридского университета Уэйна Л. Николсона (Wayne L. Nicholson) обнаружила, что целый ряд бактерий рода Carnobacterium, обычно проживающих и размножающихся в вечной мерзлоте по берегам Колымы, не только способны расти в атмосфере сверхнизкого давления (семь миллибар), богатой углекислым газом и почти лишённой кислорода, как на Марсе, но и зачастую преуспевают в ней лучше, чем в своих изначальных, «родных» условиях.

Даже летом окрестности Колымы не выглядят жаркими. Но кому-то и это место приходится родиной. А Марс? (Фото Михаила Гунькина.)Даже летом окрестности Колымы не выглядят жаркими. Но кому-то и это место приходится родиной. А Марс? (Фото Михаила Гунькина.)Вечная мерзлота — среда, весьма близкая к марсианской почве. Ну а последнюю считают пронизанной замороженной водой, и, как и на Земле, предполагается, что марсианским летом (или на экваторе) её верхний слой тает, образуя пропитанные солями подземные талые участки, где температура примерно равна 0 ˚C. Хотя на поверхности Марса может быть значительно теплее, учёные выбрали для имитации марсианских условий в лаборатории именно 0 ˚C. Дело в том, что из-за разряженной атмосферы и слабой магнитосферы Красная планета подвергается более интенсивной радиационной «бомбардировке», чем Земля. Оттого современный научный мейнстрим полагает, что в почве на глубинах менее 10 см бактериальная жизнь в принципе не способна выживать, а наилучшие по радиации условия и вовсе будут на 15-17 см, где температура как раз достигает нуля по Цельсию.

Длившийся месяц эксперимент имел дело едва ли не с десятком тысяч штаммов бактерий, собранных с глубины 12-20 метров. Шесть оказались вполне жизнеспособны при давлении в 150 раз ниже земного и прочих марсианских прелестях; они даже успешно размножались. Вот имена видов-героев: Carnobacterium alterfunditum, Carnobacterium divergens, Carnobacterium funditum, Carnobacterium gallinarum, Carnobacterium inhibens, Carnobacterium maltaromaticum, Carnobacterium mobile, Carnobacterium pleistocenium и Carnobacterium viridans.

Самое интригующее: эти шесть видов росли в «марсианских» условиях быстрее, чем до этого при комнатной температуре, нормальном земном давлении и кислородной атмосфере.

Учёные осторожно оценивают полученный результат: хотя ясно, что марсианские почвы насыщены солями и при таянии воды в них скорее образуется солевой раствор, нежели нормальная вода, конкретные параметры солевой насыщенности пока неизвестны. (Вот так тщательно мы десятилетиями исследуем Марс!) Поэтому по pH лабораторные условия не воспроизводили марсианские в точности. Так что стопроцентной уверенности, что этим шести видам понравилось бы на Марсе, у нас пока нет.

Кстати, этот род, Carnobacterium, известен не только тем, что процветает на охлаждённом и замороженном мясе в вакуумной упаковке и неплохо переносит УФ-обработку. Он ещё и весьма «космополитичен»: среди мест, где его встречали, есть подлёдное озеро Ванда в Антарктиде, отличающееся гиперсолёностью, вдесятеро превышающей солёность вод, например, Красного моря. Оно солонее даже Мёртвого моря и озера Ассаль. Из похожих локаций можно вспомнить разве что Эльтон — и то в самые жаркие и маловодные месяцы. Словом, приспособленность к высокому pH у бактерий этого рода немалая — по крайней мере на Земле солонее ничего нет.

Исследование перекликается с недавней работой, показавшей способность к длительному выживанию в марсианских поверхностных условиях банальной и далеко не спартанской по запросам кишечной палочки.

Отчёт о работе опубликован в журнале Proceedings of the National Academy of Sciences of the United States of America.


Источник: КОМПЬЮЛЕНТА


Океанические сине-зелёные водоросли Synechococcus производят 20% кислорода на планете. Такой высочайшей производительностью они обязаны уникальному умению приспосабливаться к нужной длине световой волны. То есть водоросль настраивает свою фотосинтетическую систему в зависимости от того, какая длина волны сейчас более доступна. Соответственно, у водорослей меняются пигменты, отвечающие за ловлю фотонов, и сама клетка следом меняет цвет, подобно хамелеону. 

Цианобактерия Synechococcus крупным планом (фото Science VU / DOE)Цианобактерия Synechococcus крупным планом (фото Science VU / DOE)Учёным из Университета Индианы (США) удалось расшифровать механизм, позволяющий Synechococcus переключаться с одной пигментной системы на другую. Они нашли у цианобактерий ген MpeZ; его активность зависит от синего света. MpeZ кодирует фермент, который сносится с белком-антенной, связанным с пигментом фикоэритрином I. Этот пигмент обычно ловит зелёный свет, но фермент заменяет у пигмента «зелёные» хромофорные группировки на те, что позволяют улавливать синий: так фикоэритрин I превращается в фикоэритрин II. Эта модификация обратима, и если уровень синих волн падает, то пигмент возвращается к поглощению зелёных волн. 

Изменения в окраске цианобактерий Synechococcus в зависимости от режима освещённости (рисунок авторов работы)Изменения в окраске цианобактерий Synechococcus в зависимости от режима освещённости (рисунок авторов работы)Соответствующим образом меняется и цвет водорослей. В прибрежных водах, где они поглощают зелёный свет, пигмент придаёт клеткам красный оттенок. Вдали от берега, в более глубоких водах усиливается доля синего и водоросли становятся оранжевыми. Эта молекулярно-генетическая уловка и позволяет Synechococcus жить и успешно вести фотосинтез в разном режиме освещённости, снабжая океан и всю планету кислородом. 


Источник: КОМПЬЮЛЕНТА


Сухие долины Мак-Мёрдо в Антарктиде могут показаться одним из наименее гостеприимных мест на Земле. Это холодная пустыня, где лишь ветер рыщет по каменистой земле, а вода существует только в виде льда, оставшегося в том числе от тех времён, когда долины покрывал океан. Короче говоря, это настолько унылый уголок планеты, что НАСА решило имитировать там марсианские условия.

Сухие долины Мак-Мёрдо и палатки отважных исследователей (фото Peter West / National Science Foundation)Сухие долины Мак-Мёрдо и палатки отважных исследователей (фото Peter West / National Science Foundation)Теперь представьте себе удивление биологов, обнаруживших в этом месте множество различных экосистем. Не на поверхности, конечно, а подо льдом — в солёных озёрах, которые вот уже тысячи и миллионы лет изолированы от каких-либо внешних источников энергии и питательных веществ. В ходе нового исследования специалисты описали одно из самых молодых подлёдных озёр, которое оставалось изолированным всего несколько тысяч лет. Хотя теоретические оценки говорили о том, что местные бактериальные сообщества должны голодать, анализ проб воды показал, что организмы чувствуют себя прекрасно, питаясь продуктами химических реакций между водой и дном.

Пожалуй, наиболее яркая достопримечательность Сухих долин Мак-Мёрдо — Кровавый водопад, где железо окрашивает лёд в красный цвет и заодно подпитывает бактериальные сообщества, попавшие туда около 1,8 млн лет назад, когда морской залив оказался отрезан от океана и замёрз под ледником. Описываемое здесь озеро Вида располагается в другой долине и, по-видимому, было в изоляции не так долго. Оно очень солёное и не замерзает при температуре –12 ˚C. Толщина льда над водой достигает 16 м. Радиоуглеродное датирование показало, что озеро обменивалось углеродом с атмосферой по крайней мере несколько тысяч лет назад.

Учёные полагали, что организмы, если они там ещё есть, находятся на заключительных этапах разложения, то есть несколько микробов ещё питаются последними органическими соединениями, выделяя метан.

Озеро Вида (фото Bernd Wagner, University of Cologne)Озеро Вида (фото Bernd Wagner, University of Cologne)Выяснилось, однако, что бескислородное озеро богато органическими соединениями, в том числе углеводами, а метана там мало. Кроме того, в воде обнаружено значительное количество водорода. Соединения азота тоже часты, особенно закись азота и аммиак. Подобная смесь окисленных и восстановленных соединений говорит о том, что до финального разложения ещё очень далеко.

И кто же там живёт? Судя по последовательностям ДНК, 32 вида, представляющих восемь типов бактерий. Что движет их обменом веществ, в точности пока неясно. Очевидно лишь то, что метаногены в озере не доминируют. Кстати, следует отметить, что в пробах полностью отсутствуют археи, которые часто встречаются в экстремальных условиях.

Химический состав воды подсказывает, что бактериальные сообщества питаются молекулярным водородом, освобождаемым в результате реакций между водой и силикатами железа подстилающей породы. Затем водород может включаться в состав сложных органических соединений. Если это верно, то озеро Вида имеет совершенно иной источник энергии, чем Кровавый водопад.

Это довольно важный вывод, поскольку он предполагает, что разнообразие простых, естественно протекающих химических реакций способно предоставить энергию, необходимую для поддержания жизни, даже при отсутствии таких вещей, как солнечный свет или тектоника плит. Это, в свою очередь, должно повлиять на наше представление о перспективах поиска жизни в подлёдных океанах Европы или возможных приповерхностных солёных озёрах Марса.

Другая интригующая перспектива заключается в том, что чуть ли не все сухие долины могут оказаться домом экосистем с разной степенью изоляции, а также с разными источниками химической энергии, которые способны пережить любые катаклизмы вплоть до глобального оледенения.


Источник: КОМПЬЮЛЕНТА


Понедельник, 19 Ноябрь 2012 23:59

Есть ли жизнь в стратосфере?

Автор

Кто живёт на краю космоса? То есть — кто ещё, кроме пилотов и редких ныряльщиков в небо? На этот вопрос и собрался ответить один из сотрудников НАСА.

Луна сквозь верхние слои атмосферы. Снимок сделан в декабре 2003 года с борта Международной космической станцииЛуна сквозь верхние слои атмосферы. Снимок сделан в декабре 2003 года с борта Международной космической станцииЕсли попытаться вообразить условия, пригодные для жизни, то стратосфера приходит на ум далеко не сразу: высоко, сухо, холодно. Этот атмосферный слой лежит над тем участком, где формируется погода, то есть на высоте 10−50 км над поверхностью Земли. Средняя температура нижней части составляет −56 ˚C, а струйные течения дуют со скоростью 160 км/ч. Плотность атмосферы менее 10% от показателя на уровне моря. Кислород существует в форме озона, который прикрывает всё, что ниже него, от ультрафиолетового излучения космоса, но над ним (то есть выше 32 км) защиты нет.

Прекрасное место для поиска живых организмов, не так ли? Да, уверен биолог Дэвид Смит из Университета штата Вашингтон (США), там можно найти микробов едва ли не из всех доменов.

Г-н Смит занят в проекте Космического центра им. Кеннеди «Микроорганизмы в стратосфере» (Microorganisms in the Stratosphere, MIST), который направлен на перепись жизни на высоте нескольких тысяч метров над Землёй. С помощью высотных метеошаров и проб, взятых обсерваторией на вулкане Бачелор (штат Орегон), исследователи собираются прояснить, где же проходит граница биосферы.

Сообщения о том, что микроорганизмы способны выживать на высотах вплоть до 77 км, поступают с 1930-х годов, но г-на Смита не удовлетворяет степень достоверности старых данных. Возможно, микробы оказались занесены на большую высоту самим научным оборудованием. «В статьях тех лет не говорится ничего о стерилизации», — подчёркивает специалист.

Некоторые исследователи предполагали, что обнаруженные формы жизни были занесены из космоса, но г-н Смит уверен в их земном происхождении. Большинство из них — бактериальные споры, то есть исключительно стойкие организмы с защитной оболочкой, которая способна перенести и низкую температуру, и сухость, и высокий уровень радиации. Скорее всего, их туда забрасывают пыльные бури и ураганы, после чего они разлетаются по всему миру. Спускаясь и находя подходящие условия, споры оживают.

Информация о том, кто и как живёт в стратосфере, прольёт свет на способность организмов выживать в чудовищно сложных условиях на других планетах, и прежде всего на Марсе. Интересно будет взглянуть и на то, какие изменения и генетические мутации могут испытывать микробы на большой высоте, особенно по ту сторону озонового слоя.

Семинар Дэвида Смита по означенной теме:


 Источник: КОМПЬЮЛЕНТА


Один из способов, которыми клетки (не только иммунные) борются с инфекцией, — это попросту поедание чужаков-патогенов. Клетка поглощает бактерию и переваривает её с помощью пищеварительных ферментов, которые содержатся в особых мембранных органеллах — лизосомах.

Сальмонеллы (зелёные), вторгшиеся в эритроцит (фото David Holden / Imperial College London)Сальмонеллы (зелёные), вторгшиеся в эритроцит (фото David Holden / Imperial College London)Но бактерии из рода Сальмонелл успешно сопротивляются такому поглощению. Точнее, не самому поглощению, а именно перевариванию с помощью лизосом. Лизосомам необходимо постоянно пополнять запасы пищеварительных ферментов, которые транспортируются к ним от синтезирующих белки рибосом.

Исследователи из Имперского колледжа Лондона (Великобритания) обнаружили, что сальмонеллы, попав в клетку, подавляют работу транспортной системы, которая перевозит ферменты к лизосомам. В итоге ферменты в лизосоме истощаются, и сальмонелла может её не бояться.

Любопытно, что бактерии, как пишут исследователи в журнале Science , могут использовать испорченные лизосомы в своих нуждах. Понятно, что в них содержится много белков — как полупереваренных, так и целых, и не только белков. Всё это для сальмонеллы источник питательных веществ. То есть бактерия не только обезоруживает клетку, но и грабит её.

В дальнейшем исследователи планируют побольше узнать о механизме, с помощью которого сальмонелла подавляет клеточный транспорт ферментов. Сведения об этом помогут создать более эффективные средства борьбы с этими бактериями, которые служат причиной множества болезней, от гастроэнтеритов до сепсиса и брюшного тифа.

 


 

Источник: КОМПЬЮЛЕНТА


 

Ученые обнаружили у цианобактерий составной элемент пептидной нуклеиновой кислоты (ПНК), которая могла служить для передачи наследственной информации еще до появления РНК. Это открытие позволяет лучше понять, как возникла жизнь на Земле.

ЦианобактерииЦианобактерииРезультаты исследования, проведенного американскими биохимиками из Института этномедицины и их шведскими коллегами из Стокгольмского университета, опубликованы в журнале PLOS ONE.

Считается, что 3,5 миллиарда лет назад наследственная информация первых организмов кодировалась не в молекулах ДНК, как это происходит сейчас у всех живых существ (за исключением некоторых вирусов), а в молекулах РНК. Однако РНК, основу которой составляют мономеры сахара рибозы и фосфатные основания, слишком сложна, чтобы сразу возникнуть из неорганических молекул.

Поэтому ученые предположили, что сначала роль РНК выполняла пептидная нуклеиновая кислота, остовом которой служила цепочка, образованная мономерамиN-(2-аминоэтил) глицина (АЭГ). Именно к этой цепочке могли прикрепляться азотистые основания, такие, как аденин или гуанин. АЭГ, ее составной элемент, легко синтезируется из простейших веществ, входивших в состав первичного океана- CH4, N2, NH3 и воды.

Долгое время специалисты изучали свойства АЭГ, однако не могли найти его у современных живых организмов, что делало предположение о ПНК слишком гипотетичным. Авторы работы смогли исправить это, проанализировав несколько диких и лабораторных штаммов цианобактерий. Оказалось, что АЭГ имеется у цианобактерий из 5 различных морфологических групп.

Роль, которую АЭГ играет в метаболизме цианобактерий, ученым выяснить пока не удалось. Но авторы исследования считают, что присутствие АЭГ у этих организмов является «эхом» первой жизни, поскольку цианобактерии являются одними из древнейших живых существ на Земле.


Источник: infox.ru


Нам кажется, что за последние полвека природа прямо-таки ополчилась на человечество, насылая на нас новые опаснейшие инфекции. Даже если не считать многоликий грипп, который регулярно «радует» врачей всё более вирулентными штаммами, можно вспомнить марбургский вирус, лихорадку Эбола и лихорадку Ласса. В середине 1990-х годов эти тропические вирусы даже объединили под общим названием «новые патогены».

Вирус лихорадки Эбола. (Фото Charles Smith.)Вирус лихорадки Эбола. (Фото Charles Smith.)Между тем некоторые исследователи сильно сомневаются в том, что возбудители этих лихорадок являются продуктом новейшей эволюции. В Science появилась статья, в которой учёные под руководством специалистов из Гарварда (США) рассказывают о результатах генетического анализа страшных тропических инфекций. Согласно новым данным, лихорадка Ласса ответвилась от эволюционного дерева геморрагических лихорадок примерно 500 лет назад. Возбудитель лихорадки Эбола возник и того раньше: его эволюционные пути с вирусом Марбурга разошлись 10 тысяч лет назад.

Вирус лихорадки Ласса. (Фото BSIP/Corbis.)Вирус лихорадки Ласса. (Фото BSIP/Corbis.)Кроме того, в пользу давнего происхождения этих вирусов говорят и иммунологические исследования, проведённые среди населения Гвинеи. Оказалось, что до 55% жителей сталкивались с возбудителем лихорадки Ласса и до 22% — с вирусом Эбола. Известно, что возбудитель оставляет за собой следы в иммунной памяти, однако столь высокий процент «знакомых» с этими вирусами говорит о том, что болезни мучили людей многие поколения.

Наконец, исследователи отмечают, что симптомы заболеваний довольно сильно расходятся с тем, что им обычно приписывают. Вместо обширного внутреннего кровотечения, которым сопровождаются геморрагические лихорадки, у больных наблюдают кашель, жар, боли в горле. В итоге учёные приходят к выводу, что появление «новых патогенов» обеспечили свежие диагностические средства, которые позволили выделить именно этих возбудителей и описать их симптомы. Соответственно, авторы работы призывают с большей осторожностью относиться к паническим заявлениям о «новых опасных возбудителях». Да, такие возбудители могут быть весьма серьёзными, но при этом далеко не новыми, и, возможно, способы лечения таких заболеваний могут быть подсказаны теми, кто с этими возбудителями уже сталкивался.


Источник: КОМПЬЮЛЕНТА


В природе метан образуется из органических остатков в условиях отсутствия кислорода. И если бы не архебактерии, которые его окисляют, живым существам на Земле пришлось бы туго: метан намного более сильный парниковый газ, чем CO2, и глобальное потепление он устроил бы нам в куда более сжатые сроки.

Колония метанокисляющих архей и сульфатредуцирующих бактерий, выглядящих как белые нити (фото Kai-Uwe Hinrichs / MARUM)Колония метанокисляющих архей и сульфатредуцирующих бактерий, выглядящих как белые нити (фото Kai-Uwe Hinrichs / MARUM)Естественно, учёных интересует, что археи делают с метаном. Считалось, что этот газ служит микроорганизмам одновременно и источником энергии, и поставщиком углерода. То есть постулировалось, что метанокисляющие археи — типичные гетеротрофы, которые строят свою органику не из неорганического углекислого газа, как, например, растения, а из органических молекул метана, пусть и довольно простых.

Около десяти лет назад учёные из Института микробиологии моря Общества Макса Планка иУниверситета Бремена (оба — ФРГ) начали исследования термофильных метанокисляющих бактерий, которые живут на глубине более двух тысяч метров вблизи берегов Мексики в содружестве с сульфатредуцирующими бактериями. И им удалось выяснить странную вещь: эти бактерии оказались автотрофами, то есть они использовали для построения собственной органики не метан, а углекислый газ. Выяснить это удалось с помощью радиоактивно меченых молекул того и другого: метан шёл чисто на добычу энергии, а в синтезируемых биомолекулах оставался радиоактивный изотоп из CO2

С экологической точки зрения это равносильно тому, как если бы вдруг оказалось, что львам нужно время от времени выходить на солнце для фотосинтеза. Впрочем, бактерии и археи часто бывают очень неординарны по своим экологическим и молекулярно-биохимическим повадкам, поэтому совсем не приходится удивляться тому, что археи пренебрегают таким очевидным ресурсом для биосинтеза, как метан, и используют вместо него углекислый газ. Так или иначе, они в этом смысле оказывают двойную пользу, избавляя океан и атмосферу сразу от двух парниковых газов.

Результаты исследований опубликованы в журнале PNAS.


Источник: КОМПЬЮЛЕНТА


Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

"Прадеды" дождевых червей вызвали первое глобальное потепление на Земле

02-07-2018 Просмотров:2577 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

"Прадеды" дождевых червей вызвали первое глобальное потепление на Земле

Первые многоклеточные животные уничтожили гигантские запасы органики, накапливавшиеся на дне первичного океана Земли, что вызвало мощное глобальное потепление примерно 500 миллионов лет назад, говорится в статье, опубликованной в журнале Nature Communications. "На дне океана...

Своим коллективным поведением трилобиты напоминали современных ракообразных

20-03-2011 Просмотров:10457 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Своим коллективным поведением трилобиты напоминали современных ракообразных

Карлтон Бретт из Университета Цинциннати (США), Адриан Кин из Ягеллонского университета (Польша) и их коллеги готовы представить анализ большого количества групповых окаменелостей трилобитов. Трилобит (фото Trailmix.Net) Эти древние членистоногие вымерли свыше...

Ученые выяснили, как пели первые птицы и динозавры

13-10-2016 Просмотров:5905 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Ученые выяснили, как пели первые птицы и динозавры

Необычная окаменелость, найденная в Антарктиде, указывает на то, что динозавры не умели "петь", и что первые птицы издавали звуки, похожие на крякание уток, трубеж лебедей и гудение диких гусей, говорится в статье, опубликованной в журнале Nature. "Сегодня мы постепенно...

Осетр восточносибирский - Acipenser baeri stenorrynchus

13-11-2012 Просмотров:15294 Рыбы Енисея Антоненко Андрей - avatar Антоненко Андрей

Осетр восточносибирский - Acipenser baeri stenorrynchus

В Енисее осетр является пресноводной рыбой. Представлен двумя формами - немногочисленной жилой и полупроходной. По внешнему виду различить эти две формы почти невозможно. Жилой осетр в Енисее распространен до г....

В ЮАР обнаружен древнейший гриб возрастом 2,4 млрд лет

02-05-2017 Просмотров:5561 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

В ЮАР обнаружен древнейший гриб возрастом 2,4 млрд лет

Ученые нашли в протерозойских отложениях на юге Африки окаменелость, похожую на мицелий гриба. Находка доказывает, что древнейшие грибы жили на дне моря. Об этом говорится в статье палеонтологов из Швеции и...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.