Мир дикой природы на wwlife.ru
Вы находитесь здесь:Новости>>Новости Нейробиологии>>Скорость реакции нервной цепи не зависит от её размеров

Вторник, 04 Февраль 2014 14:27

Скорость реакции нервной цепи не зависит от её размеров

Автор 

Работу нервной цепи обычно описывают скоростью реакции: это один из краеугольных параметров любой «науки о мозге», будь то психология или нейробиология. С помощью скорости реакции удалось построить весьма эффективные модели, объясняющие различия в поведении индивидуума: в таких моделях скорость отклика зависит от накопления единичных раздражителей, информационных единиц. То есть мозг, грубо говоря, работает аккумулятором данных, и когда их количество превосходит некий порог, запускается отклик. Сидя на диване, мы можем думать, что нам нужно сделать то-то и то-то, и когда количество (или навязчивость) этих «то-то» достигает некоего уровня, мы с дивана встаём. А различия в скорости реакции можно объяснить тем, насколько быстро и специфично мозг собирает информацию для того или иного действия. 

Нейроны коры мозга, растущие в культуре (фото Dennis Kunkel Microscopy, Inc.). Нейроны коры мозга, растущие в культуре (фото Dennis Kunkel Microscopy, Inc.). С другой стороны, нейробиологи заметили, что психологическая скорость реакции сопоставима с поведением отдельного нейрона. Активация нервной клетки тоже происходит после преодоления определённого порога раздражения, которое может приходить к ней от соседних клеток, и работу нервной цепи, казалось бы, тоже можно было охарактеризовать скоростью реакции. Но в нервной цепи может быть много, очень много нейронов; точных цифр пока никто не знает, однако, по примерным оценкам, в глазном движении могут участвовать приблизительно 100 тысяч нервных клеток. Вопрос в том, как этот огромный коллектив нейронов аккумулирует сигнал, чтобы потом выдать результат — в полном соответствии с теорией накопления? 

Если, допустим, система нейронов ждёт, чтобы каждый её член накопил достаточно входящих сигналов, то скорость реакции будет тем меньше, чем больше сеть. Если же активация нейронного ансамбля определяется только каким-то одним «пусковым» нейроном, то большая сеть будет отзываться быстрее, чем маленькая, так как в большой на «пусковой» нейрон будет приходить больше сигналов. 

Другой вопрос — координация нейронного ансамбля. Чем сильнее скоординирована система, тем больше она похожа на единый информационный накопитель. То есть в пределе много нейронов будут работать как один, накапливая раздражение и реагируя на него, подобно одной клетке. Но насколько глубокой должна быть координация нейронов в ансамбле, чтобы все они работали в унисон? 

Чтобы ответить на эти вопросы, исследователи из Университета Вандербильта (США) разработали виртуальную модель, в которой можно было сопоставить поведение разного количества информационных аккумуляторов и интенсивность впитывания ими входящих сигналов. Модель оказалась весьма ресурсоёмкой: Джеффри Шеллу (Jeffrey Schall) и его коллегам пришлось ограничиться сетью в 1 000 виртуальных нейронов, большего количества не выдерживал даже сверхмощный компьютер. 

Исследователей интересовало, в какой момент происходит запуск ответной реакции, что является тем последним камешком, который вызывает обвал. Происходит ли это, когда «камешек» падает на какой-то один нейрон, или же такие «камешки» должны упасть на всех участников цепи? Оказалось, что ни в первом, ни во втором случае скорость реакции никак не соотносится с тем, что можно наблюдать в настоящей нервной системе. Такой же отрицательный результат учёные получили, когда попытались сделать разные нейроны слишком по-разному накапливающими раздражение. 

Однако реальных значений скорости реакции всё же можно было добиться, более или менее уравняв все нейроны по способности накапливать информационные «камешки» и снабдив всю систему ограничительными правилами, которые регулировали бы работу нейронов так, чтобы они выступали в унисон. То есть входящее раздражение падает на нейронный ансамбль так, как будто его воспринимает не набор из ста, тысячи или миллиона нейронов, а как один нейрон. На практике это означает, что время реакции не зависит от размера нейронной цепи: в ней может быть 10 или 1 000 нейронов, но время отклика у них всё равно будет примерно одинаковым. И то же самое, очевидно, верно и для более масштабных цепей. 

При этом, конечно же, характеристики нейронов в 10-клеточной и в 1 000-клеточной цепи будут различаться, как и правила, которые ограничивают их общение друг с другом. Мы возьмём на себя смелость сравнить всё это с двумя системами — из 10 и из 1 000 сообщающихся сосудов. Как сделать так, чтобы одним и тем же количеством воды наполнить и ту и другую? Очевидно, уменьшив размер сосудов в той системе, где их больше. Разумеется, тут будет играть роль, во сколько кувшинов мы одновременно льём воду, какого размера перемычки между ними и т. д., но дальше мы фантазировать не будем. 

Так или иначе, исследователям удалось теоретически согласовать данные психологии и нейробиологии, и теперь стоит дождаться экспериментов, направленных на проверку именно этих теоретических данных. 

Результаты исследования опубликованы в журнале PNAS.


Источник: КОМПЬЮЛЕНТА


 

Прочитано 7858 раз

Авторизуйтесь, чтобы получить возможность оставлять комментарии

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Когда в морях наступит новый меловой период?

20-10-2012 Просмотров:10931 Новости Экологии Антоненко Андрей - avatar Антоненко Андрей

Когда в морях наступит новый меловой период?

22–26 октября на 164-м собрании Американского акустического общества Дэвид Браунинг из Род-Айлендского университета представит вместе с коллегами исследование, утверждающее, что растущее подкисление морей уже в ближайшее время может серьёзно повлиять...

Лягушки умеют видеть цвета в полной темноте, выяснили ученые

01-03-2017 Просмотров:5783 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Лягушки умеют видеть цвета в полной темноте, выяснили ученые

Обычные лягушки и жабы умеют различать цвета в полной темноте и сохраняют эту способность даже в тех условиях, когда человек вообще ничего не видит, заявляют российские и шведские ученые в статье, опубликованной в журнале Philosophical Transactions of the Royal...

Жизнь в почвах Земли появилась намного раньше, чем считалось

24-11-2016 Просмотров:6359 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Жизнь в почвах Земли появилась намного раньше, чем считалось

Ученые из Университета Орегона под руководством Грегори Ретоллака (Gregory Retallack) исследовали скальные породы возрастом около трех миллиардов лет в пустынях северо-западной Австралии и обнаружили в них следы древнейших микроорганизмов. Это...

Белых медведей будут кормить с ложечки

23-02-2013 Просмотров:11717 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Белых медведей будут кормить с ложечки

Арктика стремительно перестает быть "царством льда и холода", но далеко не всех это радует. В частности, самые крупные хищники региона, белые медведи, от потепления отнюдь не в восторге — оно...

Недостаток углекислоты породил кактусы

10-05-2011 Просмотров:14520 Новости Ботаники Антоненко Андрей - avatar Антоненко Андрей

Недостаток углекислоты породил кактусы

Кактусы стали успешной и разнообразной группой растений по эволюционным меркам совсем недавно — 5−10 млн. лет назад. По мнению ученых, к процветанию их привело резкое падение уровня углекислого газа в...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.