Геофизики показали на примере Австралии, что со сменой сезонов континенты немного сдвигаются. Это связано с круговоротом воды и распределением ее массы по земной поверхности.
АвстралияК такому выводу пришел австралийский ученый Ши-Чан Хан из Университета Ньюкасла, чья статья опубликована в журнале Journal of Geophysical Research: Solid Earth.
Открытие было сделано с помощью 14 GPS-станций, установленных в разных концах Австралии. В течение 9 лет исследователь наблюдал, как меняется местоположение этого континента в зависимости от времени года.
Оказалось, что во время южнополушарного лета (в это время у нас стоит зима) Австралия смещается в северо-западном направлении примерно на 1 мм, ее юго-восточная часть немного поднимается, а северо-западная, напротив, проседает на 2-3 мм. Когда наступает зима, континент возвращается в исходное состояние.
По мнению ученого, этот эффект связан с перемещением больших водных масс между Северным и Южным полушариями. Когда в Австралии стоит лето, в экваториальных широтах испаряется большое количество воды – по всему экватору исчезает примерно 20-30 мм поверхностного слоя океана.
В результате земная кора, освободившись от тяжести, выпячивается вверх – это и тянет Австралию на северо-запад. Поскольку подъем коры сильнее в районе южной части Тихого океана, чем в других регионах, Австралию несколько «перекашивает».
Когда же в Южном полушарии наступает зима, а в Северном – лето, вода с экватора, запасенная в виде льда и снега в северных широтах, оттаивает и возвращается на свое место. Благодаря этому австралийский континент смещается в исходную позицию.
Источник: infox.ru
Группа Пабло Иглесиаса (Pablo A. Iglesias), профессора электрической и компьютерной инженерии в университете Джонса Хопкинса (США), разработала систему, которая позволяет визуализировать ответ клеточного центра управления, направляющего клетки туда, куда им следует двигаться. В своей работе ученые экспериментировали с белыми клетками крови амебы и человека. Результаты их работы опубликованы в журнале Nature Communications.
Откуда клетки знают дорогу к цели В ходе эксперимента клетки определяли путь, по которому им предстоит двигаться, на основе мельчайших различий в концентрации химических веществ между одним концом ячейки и другим. «Клетки могут обнаружить различия в концентрации до 2%, — говорит Петер Девреотес (Peter N. Devreotes), глава факультета клеточной биологии в университете Джона Хопкинса. — Они могут определять небольшие различия вне зависимости от уровня фоновой концентрации, от высокой до низкой».
«Обнаружение градиента происходит в два этапа, — говорит сотрудник лаборатории Иглесиаса Чуань-Хсян Хуан (Chuan-Hsiang Huang). — Во-первых, клетки настраиваются на уровень фонового шума. Сторона клетки, где концентрация меньше, просто перестает отвечать на запросы. Центр управления внутри клетки определяет, с какой стороны поступает сигнал, и клетка начинает двигаться в сторону большего уровня шума».
Но чтобы начать двигаться, клетка должна так перестроить свои внутренности, чтобы из бесформенного пузыря превратиться в нечто, имеющее явно выраженные переднюю и заднюю части. Группа Петера Девреотеса провела еще один эксперимент с участием Мингджие Ван (Mingjie Wang) и Юлии Артеменко. В этой работе биологи изучали роль так называемой полярности— различия в чувствительности к химическим веществам между передней и задней частью клетки — в ответ на градиент их плотности. «Мы хотели знать, зависит ли полярность от движения и как полярность сама по себе помогает обнаружить градиенты», — объясняет Юлия Артеменко.
Исследователи использовали специальный фармацевтический «коктейль», который не демонтирует скелет клеток, а замораживает их на месте. Затем, как и в работе другой группы, они смотрели на реакции клеточного центра управления на химические градиенты. «Даже если клетки не переделывают скелет, чтобы двигаться, они всё равно улавливают сигналы от градиентов, и замороженный скелет влияет на ответ клетки на градиент, — говорит Артеменко. — Этого не произойдет, если скелет полностью исчезнет. Теперь мы знаем, что сам скелет, а не его способность перестраиваться, влияет на определение градиентов». Результаты этой работы появятся 6 ноября в журнале Cell Reports.
Полученные данные в конечном итоге могут пролить свет на целый ряд важнейших процессов, зависящих от движения клеток, включая клеточное развитие, иммунный ответ, заживление ран и регенерацию органов. Еще одно возможное приложение — борьба с раковыми метастазами.
Источник: Научная Россия
Хотя осьминоги и считаются одними из самых умных животных, учёные всё равно до сих пор не могут взять в толк, как эти моллюски ухитряются управляться аж с восемью конечностями. Всё-таки для восьми ног их нервная система недостаточно сложна. Было даже сделано предположение, что каждое щупальце у осьминогов снабжено автономной нервной системой и они довольно независимы от приказов мозга.
Несмотря на значительную самостоятельность своих щупальцев, осьминог всё равно приползает туда, куда собирался. (Фото The Very Lonely Traveller.) Но как в таком случае конечностям осьминогов удаётся совершать целенаправленные перемещения — без координации из центра? На этот вопрос попытался ответить Гай Леви (Guy Levy) из Еврейского университета в Иерусалиме (Израиль), наблюдавший вместе с коллегами за тем, как двигаются обыкновенные осьминоги.
Девять взрослых моллюсков жили в специально оборудованных аквариумах с системой зеркал и видеокамер, позволявших проследить траекторию каждой присоски. Выяснилось, что осьминоги при перемещении не используют ритмического чередования конечностей, как это делают все прочие животные: каждое их щупальце движется независимо от прочих, и нет никакой закономерности между длиной «руки», её скоростью и ускорением.
Исследователи сделали вывод, что мозг осьминога формулирует общую задачу, задаёт направление движения, цель. Детали же исполнения ложатся на щупальца, которые вольны делать что угодно, лишь бы цель была достигнута. Надо сказать, осьминожьи «руки» не обделены нейронами: из 500 млн, которыми располагает осьминог, в его «руках» сосредоточено почти две трети, так что им есть чем «думать».
В результате можно наблюдать, как в процессе движения меняется ориентация тела осьминога, а его щупальца при этом вообще движутся под самыми разными углами и в самых разных направлениях. При этом общее направление перемещения не меняется. Щупальца сокращаются подобно червям, и весь комплекс таких сокращений обеспечивает осьминогу целенаправленное движение. Моллюск, таким образом, полагается на три особенности: червеобразное движение щупальцев, большую степень свободы каждого из них и отсутствие жёсткого контроля со стороны головного мозга.
Правда, учёным ещё предстоит определить, насколько мозг осьминогов не властен над конечностями. Какая-то простая моторная программа тут всё равно должна быть: это общее требование для всех нервных блоков, занимающихся локомоцией у животных.
Дальнейшая расшифровка особенностей движения осьминогов, возможно, пригодится тем, кто занимается робототехникой и вынужден думать над способами заставить робота контролировать свои движения.
Результаты исследования авторы доложили на съезде Нейробиологического общества в Сан-Диего (США).
Источник: КОМПЬЮЛЕНТА
10-11-2016 Просмотров:8576 Человекообразные обезьяны, или гоминоиды (лат. Hominoidea) Антоненко Андрей
Надсемейство: Человекообразные обезьяны, или гоминоиды (лат. Hominoidea) Научная классификация Без ранга: Вторичноротые (Deuterostomia) Тип: Хордовые (Chordata) Подтип: Позвоночные (Vertebrata) Инфратип: Челюстноротые (Ghathostomata) Надкласс: Четвероногие (Tetrapoda) Класс: Млекопитающие (Mammalia) Подкласс: Звери (Teria) Инфракласс: Плацентарные (Eutheria) Надотряд: Эуархонтогли́ры (Euarchontoglires) Грандотряд: Эуархонты (Euarchonta) Миротряд: Приматообразные (Primatomorpha) Отряд: Приматы (Primates) Подотряд: Сухоносые приматы (Haplorhini) Инфраотряд: Обезьянообразные (Simiiformes) Парвотряд: Узконосые обезьяны (Catarrhini) Надсемейство: Человекообразные (Hominoidea) Семейство: Гоминиды (Hominidae) Гиббоновые (Hylobatidae) Оглавление 1. Общие сведения о Человекообразных обезьянах, Гоминоидах 2. Происхождение...
09-02-2015 Просмотров:7966 Новости Зоологии Антоненко Андрей
Энтомологи выяснили, почему муравьи быстро погибают, будучи изолированными от своих собратьев. Оказалось, что повышенная смертность муравьев-одиночек объясняется их гиперактивностью. Муравей-древоточецК такому выводу пришли швейцарские специалисты из Лозаннского университета, чья статья опубликована в журнале...
14-10-2012 Просмотров:13023 Новости Астрономии Антоненко Андрей
Планета 55 Рака e, «суперземля», расположенная в системе солнцеподобной звезды HD 75732 (она же 55 Рака, спектральный класс G8V), была открыта в 2004 году. Это одна из самых близких к...
26-03-2015 Просмотров:7388 Новости Эволюции Антоненко Андрей
Британские биохимики предложили интересную гипотезу происхождения трех химических соединений, необходимых для возникновения жизни – нуклеиновых кислот, аминокислот и липидов. По их мнению, молекулы всех трех групп могли быть синтезированы на...
15-08-2013 Просмотров:9606 Новости Экологии Антоненко Андрей
Крупные животные играют решающую роль в поддержании плодородия почв, выяснили британские ученые. После вымирания представителей мегафауны качество почв в этом регионе резко ухудшается, предупреждают они. Представители мегафауны Согласно исследованиям Криса Даути из...
Ученые обнаружили, что Европа медленно сползает под Африку. Это открытие ставит под сомнения предыдущие расчеты специалистов по глобальной тектонике — прежде считалось, что именно Черный континент ведет "подкоп" в Средиземноморском…
Halorubrum lacusprofundi — холодолюбивая бактерия, найденная в сверхсолёном Глубоком озере (Антарктида). Несмотря на свою холодоустойчивость, размножается она при 0–42 °C, а по современным представлениям такие условия (включая повышенную солёность вод)…
Как правило, чем выше дерево, тем меньше его листья. Математическое объяснение этого феномена, оказывается, одновременно накладывает ограничение на максимальную высоту деревьев. Секвойи на Медвежьей горе в Калифорнии (фото MizzD) Каре Йензен из…
Исследование, проведённое Университетом Западного Онтарио (Канада), показало, что самки шерстистого мамонта (Mammuthus primigenius), жившего к северу от полярного круга в плейстоцене (150–40 тыс. лет назад), прекращали вскармливать детёнышей молоком значительно…
Остатки древнего дельфина раскопали в Новой Зеландии местные палеонтологи. В черепе ископаемого существа сохранились следы звукового локатора, который современные дельфины используют для ориентации в пространстве и поиска добычи. Papahu taitapu, как…
В окрестностях заброшенной канадской деревни Боу-Сити в провинции Альберта обнаружен ударный кратер около 8 км в поперечнике и примерно в километр глубиной. Топографическая карта местности с контурами возможного кратера (изображение W.…
Если нынешнего Homo Sapiens переместить на нынешний Марс, несчастный погибнет по множеству причин. В первых рядах этих человекоубийц окажется радикальное — в сотню раз — падение атмосферного давления по сравнению…
Ученые выяснили, что самыми примитивными многоклеточными животными являются не губки, а гребневики. Об этом свидетельствуют результаты генетического анализа. Эволюционное дерево отображающее горизонтальный перенос геновРезультаты исследования, проведенного американскими генетиками из Брауновского университета,…
В 2010 году дорожные рабочие, расширявшие Панамериканское шоссе на северо-западном побережье Чили, наткнулись на кладбище китов. Кладбищу оказалось около 9 млн лет, и это был первый пример того, что массовая…