Океанические сине-зелёные водоросли Synechococcus производят 20% кислорода на планете. Такой высочайшей производительностью они обязаны уникальному умению приспосабливаться к нужной длине световой волны. То есть водоросль настраивает свою фотосинтетическую систему в зависимости от того, какая длина волны сейчас более доступна. Соответственно, у водорослей меняются пигменты, отвечающие за ловлю фотонов, и сама клетка следом меняет цвет, подобно хамелеону.
Цианобактерия Synechococcus крупным планом (фото Science VU / DOE)Учёным из
Изменения в окраске цианобактерий Synechococcus в зависимости от режима освещённости (рисунок авторов работы)Соответствующим образом меняется и цвет водорослей. В прибрежных водах, где они поглощают зелёный свет, пигмент придаёт клеткам красный оттенок. Вдали от берега, в более глубоких водах усиливается доля синего и водоросли становятся оранжевыми. Эта молекулярно-генетическая уловка и позволяет Synechococcus жить и успешно вести фотосинтез в разном режиме освещённости, снабжая океан и всю планету кислородом.
Источник: КОМПЬЮЛЕНТА
Чтобы поддерживать размножение в условиях фосфорного голодания, бактериофаги морских бактерий приходят в хозяйские клетки с набором генов, который помогает хозяевам более эффективно «выхватывать» из среды фосфор.
Бактериофаги, специализирующиеся на морских бактериях Prochlorococcus (фото авторов исследования)Исследователи из Массачусетского технологического института (США) обнаружили, что некоторые вирусы-бактериофаги приходят к своим жертвам с чем-то вроде генетического троянского коня: они приносят заражаемым бактериям гены, которые должны облегчать им жизнь в условиях стресса. Учёные работали с океаническими бактериями Prochlorococcus и Synechococcus, которые производят шестую часть кислорода на планете. Бактерии рода Prochlorococcus в диаметре не превышают одного микрона, а их плотность достигает 100 миллионов клеток на литр воды. Synechococcus чуть крупнее и не столь многочисленны. Соответственно, вирусы, поражающие эти бактерии, относятся к самым распространённым среди себе подобных.
Жизнь в океане полна превратностей, в том числе для микроорганизмов. Часто случается, что бактерии заносит в воды, бедные фосфором. А он критически необходим для жизнедеятельности: без фосфорных соединений невозможно синтезировать нуклеиновые кислоты, то есть размножаться. На такие случаи у бактерий есть специальная генетическая система, чувствующая, когда фосфора начинает не хватать, и активирующая другие гены, которые кодируют связывающие фосфор белки. Эти дополнительные белки позволяют бактериям наловить больше фосфора и пережить кризис.
Но, как оказалось, у вирусов тоже есть такие гены для ловли фосфора. Размножение вируса требует изрядных фосфорных запасов для штамповки вирусной ДНК. Исследователи заметили, что, когда бактериофаг заражает бактерию в условиях недостатка фосфора, в вирусном геноме включаются гены белков, отвечающих за «ловлю» фосфорных соединений.
Оказалось, что вирусные белки управляются теми же генами, что и бактериальные. То есть когда бактерия чувствует фосфорный стресс, она включит как свою, так и вирусную систему по добыче дополнительного фосфора. Основная его масса пойдёт на нужды вируса. Разумеется, самой бактерии может что-то перепасть от усилившегося фосфорного потока, но впрок ей это не пойдёт: через 10 часов цикл размножения вируса закончится, и бактериальную клетку разорвёт под напором выходящих наружу вирусных частиц.
В статье, опубликованной в журнале Current Biology, авторы пишут, что далеко не все бактериофаги, паразитирующие на Prochlorococcus и Synechococcus, обладают этими генами, а только те, что живут в атлантических популяциях бактерий. К примеру, тихоокеанские Prochlorococcus и Synechococcus не сталкиваются с недостатком фосфора, а потому соответствующей системы у них нет. А вот атлантические вирусы когда-то давно сумели скопировать гены хозяев, создавших себе молекулярный механизм на случай фосфорного голодания; в результате вирусы могут размножаться, не обращая внимания на изменения в среде: удвоенный поток фосфора позволяет им синтезировать столько ДНК, сколько нужно.
Столь тонкое приспособление вируса под нужды хозяина исследователи видят впервые. Впрочем, по их словам, бóльшая часть сведений о взаимоотношениях бактерий и фагов пришла к нам из биомедицинских исследований. А жизнь в человеческом организме и биологической лаборатории всё-таки сильно отличается от того, что происходит в Мировом океане. Поэтому не исключено, что это не единственный трюк, с помощью которого «дикорастущие» вирусы облегчают себе жизнь.
Источник: КОМПЬЮЛЕНТА
Океанические бактерии Synechococcus плавают с помощью волнообразных биений клеточной мембраны, которые вызывает белковая спираль, тянущаяся через всю клетку.
Бактерии плавают с помощью жгутиков. Белковую нить жгутика приводит в движение хитроумный молекулярный мотор, закрепленный в мембране клетки: мотор работает, жгутик крутится, подобно пропеллеру, бактерия движется. Но есть весьма распространённый род бактерий, называемых Synechococcus, у которых жгутика нет, а однако ж они перемещаются с довольно значительной для бактерий скоростью в 25 мкм/с.
Synechococcus живут в океане и служат важным компонентом пищевой пирамиды. Генóм этих бактерий был прочитан ещё в 2003 году, но ответа на вопрос, как они двигаются, это не дало. В статье, опубликованной на сайте
У Synechococcus тоже наблюдаются волны, пробегающие по клетке, которые зависят от наличия у бактерии белка SwmA, располагающегося во внешней мембране. Но скользить так по поверхности намного легче, чем плавать. Хватает ли бактерии «мембранного волнения», чтобы плыть в толще воды? Ответом на вопрос стала математическая модель, построенная учёными. Согласно их выкладкам, чтобы плавать таким образом, амплитуда бегущей волны должна достигать 0,05 мкм, а сама волна — распространяться со скоростью 73 мкм/с. Частота вращения двигателя-спирали в этом случае будет равна где-то 186 Гц.
Synechococcus, как пишут исследователи, справляется с задачей благодаря особенностям строения внешней клеточной мембраны. На ней, как уже было сказано, сидит белок SwmA, и его молекулы располагаются под углом 60˚ друг к другу. Когда спираль поворачивается, соединённые с ней молекулы SwmA тоже движутся, но из-за особенностей их взаиморасположения образующаяся волна оказывается больше, что дополнительно ускоряет бактерию. Хотя, разумеется, такой способ передвижения — с помощью белкового «буравчика» — всё равно не столь эффективен, как старый добрый жгутик, скорость вращения которого, для сравнения, составляет 1 700 Гц.
Источник: КОМПЬЮЛЕНТА
20-02-2015 Просмотров:7702 Новости Зоологии Антоненко Андрей
Команда ученых под руководством Герберта Вирджина (Herbert Virgin) из университета Вашингтона в Сент-Луисе (США) во время опытов с мышами пришли к удивительному открытию. Оказалось, что часть признаков мыши получали в...
19-12-2018 Просмотров:2954 Новости Палеонтологии Антоненко Андрей
Палеонтологи нашли в Италии останки очень древнего хищного динозавра, своеобразного "прадеда" тираннозавров. Его открытие говорит о неожиданно раннем появлении плотоядных "ящеров ужаса", заявляют ученые в статье, опубликованной в журнале PeerJ. Горгозавр,...
09-02-2016 Просмотров:7198 Новости Микробиологии Антоненко Андрей
Ученые проанализировали то, как сине-зеленые бактерии ощущают свет и движутся к нему, и пришли к выводу, что эти микробы используют те же принципы для работы своего зрения, что и глаза многоклеточных существ, говорится в статье, опубликованной в журнале eLife. Бактериальный глаз"То,...
15-06-2013 Просмотров:14422 Новости Палеонтологии Антоненко Андрей
Находки окаменевшей мускулатуры считаются в палеонтологии уникальным, из ряда вон выходящим событием. Образец девонской рыбы с сохранившимися мышцами живота, обычно встречающимися лишь у наземных тетрапод, оказался удивительным вдвойне. Панцирная рыба Неожиданная находка...
27-04-2016 Просмотров:7012 Новости Палеонтологии Антоненко Андрей
Японские палеонтологи описали новый вид мезозойских звероподобных рептилий, очень похожих на млекопитающих. Эти небольшие растительноядные терапсиды были, скорее всего, теплокровными и даже покрыты шерстью. Правда, до наших дней от них...
Российские ученые из Пермского университета (ПГНИУ) совместно с коллегами из Москвы, Санкт-Петербурга и Краснодара обнаружили в озере Церик-Кель в Кабардино-Балкарии три новых грота, а также зафиксировали рекордную глубину водоема -…
Учёный мир и мир околонаучный бурлят от возбуждения. Генетики в США смогли создать искусственную жизнь — простую клетку микоплазмы. После того, как они выстроили её цепочку ДНК и подсадили в…
Сотрудники Университета Эмори и Медицинского центра Рочестерского университета (оба — США) открыли новый способ адаптации вируса иммунодефицита человека, который помогает объяснить, почему ВИЧ остаётся грозным врагом, несмотря на тридцать лет…
Геологический катаклизм лишил надежды на счастливую семейную жизнь двух скорпионов, обитавших 290 млн лет назад неподалеку от современного немецкого города Хемниц. Выпавший после извержения мощный слой вулканического пепла буквально похоронил…
Исследователи представили вещественные доказательства, подтверждающие одну из теорий установления на Земле господства динозавров. Исследование международной команды ученых опубликовано в журнале Science Advances. Теория гибели динозавров знакома многим: 66 миллионов лет назад на Землю упал большой…
Происхождение и ранние этапы эволюции черепах представляют для современной палеонтологии довольно большой интерес. Американским палеонтологам с помощью современных методов научных исследований удалось внести ясность в то, как именно появились эти…
Центр биологического разнообразия США (CBD) опубликовал отчёт, согласно которому семнадцать видов арктических животных находятся под угрозой исчезновения из-за таяния льдов, вызванного глобальным потеплением. Первыми жертвами таяния льдов станут белые медведи. (Фото…
Группа палеонтологов из Китая и Великобритании представила описание самки птерозавра Darwinopterus. Скелет самки птерозавра (фото Lü Junchang, Institute of Geology, Beijing) Останки летающей рептилии, первая научная характеристика которой появилась в конце…
Биологи выяснили, что образование новых видов может происходить прямо на наших глазах. Об этом свидетельствует пример дьявольских карпозубиков - данный вид рыб, обитающий в Долине смерти, мог образоваться всего несколько…