Социальные сети бактерий давно престали быть для учёных новостью. Представления о микрофлоре как о куче обособленных бактериальных клеток за последнее десятилетие почти полностью исчезло, и теперь любую бактериальную «тусовку» рассматривают именно как сообщество — где все друг с другом общаются, помогают и т. д. Теперь исследователи заняты тем, что постепенно расшифровывают механизмы, с помощью которых бактерии поддерживают свои социальные сети. Обычно в таких случаях речь идёт о химических «средствах информации»; иногда же удаётся найти нечто уникальное в своей необычности (как это было с бактериальными электрическими проводами).
Фрагмент межбактериальной перемычки из мембранных пузырьков под электронным микроскопом (здесь и ниже фото авторов работы).Исследователи из Национальной лаборатории имени Лоуренса в Беркли (США) обнаружили ещё один способ объединения бактерий в социальную сеть. Наблюдая за обычной почвенной бактерией Myxococcus xanthus, Манфред Ауэр и его сотрудники обратили внимание на мембранные нитевидные перемычки, соединяющие клетки бактерий. Эту межбактериальную сеть учёные описывают в журнале Environmental Microbiology; ирония же здесь в том, что то же самое видели многие исследователи и до группы г-на Ауэра, но все считали это артефактом, осколками клеток, разрушенных при отборе и анализе образцов.
То, что сеть действительно существует, удалось доказать с помощью особой трёхмерной сканирующей электронной микроскопии.
Бактерии часто обмениваются между собой химическими сигналами, причём эти сигналы они просто выделяют в окружающую среду. Однако это всё равно что обсуждать секретные военные планы в «Твиттере»: другие бактерии легко могут «подслушать» эти сообщения и использовать полученную информацию, чтобы, например, лишить конкурентов доступа к пище. Поэтому, для пущей секретности, бактерии упаковывают свои химические сообщения в мембранные пузырьки. Эти пузырьки объединяются в цепочки, которые потом находят соседнюю клетку.
Эти цепочки (которые напоминают скорее ожерелья, нежели ровные гладкие провода) соединяют только клетки M. xanthus. То есть бактериям не надо бояться, что их «подслушают» враги: наоборот, сами M. xanthus могут договариваться между собой, как им лучше вытеснить конкурентов с территории.
Впрочем, пока что от открытия больше вопросов, чем ответов. Учёным только предстоит понять, почему клетки другого вида не могут подсоединяться к таким проводам, и как, собственно говоря, по ним происходит передача сигналов. Однако в том, что эти перемычки служат именно для общения, для передачи сигнальных молекул, авторы нисколько не сомневаются.
Модель образования межбактериальных проводов из набора мембранных пузырьков.
Источник: КОМПЬЮЛЕНТА
Океанические бактерии Synechococcus плавают с помощью волнообразных биений клеточной мембраны, которые вызывает белковая спираль, тянущаяся через всю клетку.
Бактерии плавают с помощью жгутиков. Белковую нить жгутика приводит в движение хитроумный молекулярный мотор, закрепленный в мембране клетки: мотор работает, жгутик крутится, подобно пропеллеру, бактерия движется. Но есть весьма распространённый род бактерий, называемых Synechococcus, у которых жгутика нет, а однако ж они перемещаются с довольно значительной для бактерий скоростью в 25 мкм/с.
Synechococcus живут в океане и служат важным компонентом пищевой пирамиды. Генóм этих бактерий был прочитан ещё в 2003 году, но ответа на вопрос, как они двигаются, это не дало. В статье, опубликованной на сайте
У Synechococcus тоже наблюдаются волны, пробегающие по клетке, которые зависят от наличия у бактерии белка SwmA, располагающегося во внешней мембране. Но скользить так по поверхности намного легче, чем плавать. Хватает ли бактерии «мембранного волнения», чтобы плыть в толще воды? Ответом на вопрос стала математическая модель, построенная учёными. Согласно их выкладкам, чтобы плавать таким образом, амплитуда бегущей волны должна достигать 0,05 мкм, а сама волна — распространяться со скоростью 73 мкм/с. Частота вращения двигателя-спирали в этом случае будет равна где-то 186 Гц.
Synechococcus, как пишут исследователи, справляется с задачей благодаря особенностям строения внешней клеточной мембраны. На ней, как уже было сказано, сидит белок SwmA, и его молекулы располагаются под углом 60˚ друг к другу. Когда спираль поворачивается, соединённые с ней молекулы SwmA тоже движутся, но из-за особенностей их взаиморасположения образующаяся волна оказывается больше, что дополнительно ускоряет бактерию. Хотя, разумеется, такой способ передвижения — с помощью белкового «буравчика» — всё равно не столь эффективен, как старый добрый жгутик, скорость вращения которого, для сравнения, составляет 1 700 Гц.
Источник: КОМПЬЮЛЕНТА
17-02-2016 Просмотров:6707 Новости Антропологии Антоненко Андрей
В тестах на пространственное мышление, где надо совмещать объемные фигуры, мужчины стабильно превосходят женщин. Российские ученые вместе с британскими коллегами показали, что такие результаты скорее объясняются условиями, в которых мальчики...
12-01-2025 Просмотров:306 Новости Палеонтологии Антоненко Андрей
Палеонтологи сделали знаковое открытие: они нашли прекрасно сохранившиеся эмбрионы, возраст которых превышает 500 миллионов лет. Миниатюрные окаменелости были обнаружены в формации Куаньчуаньпу в Китае. Они относятся к раннему кембрийскому периоду. Находка...
16-04-2013 Просмотров:12511 Новости Зоологии Антоненко Андрей
Исследователи из университета Бакнелла, штат Пенсильвания, ввели в систематику животного мира новый род и вид рукокрылых млекопитающих, открытый в Южном Судане. Сотрудники этого вуза участвуют в программах по охране окружающей...
03-12-2016 Просмотров:6316 Новости Палеонтологии Антоненко Андрей
Происхождение китового уса интриговало биологов со времен Чарльза Дарвина – слишком уж необычно выглядит зубной аппарат усатых китов, и понять, как он появился, ученые довольно долго не могли. Ясность в...
24-01-2014 Просмотров:8428 Новости Зоологии Антоненко Андрей
По словам ученых, мозг раков-богомолов не сравнивает данные, поступающие с разных рецепторов, а использует их в "сыром" виде. Рак-богомолПричудливые раки-богомолы и их родичи оказались обладателями крайне необычной формы зрения, почти не требующей вычислительных...
Титан — это один из самых загадочных объектов Солнечной системы. Уже давно ученые выдвигают предположения о том, что на этом спутнике Сатурна, возможно, существует примитивная жизнь. Недавнее открытие американскими астрономами…
Вопреки распространённому мнению, существует, по крайней мере, ещё несколько видов клеток живых организмов, которые крупнее страусиного яйца. Возможно, страусиные яйца могут оказаться самыми тяжёлыми клетками в природе, но тесты ещё…
Лисьи акулы известны своим хвостом, который порой достигает половины длины тела. Считается, что он нужен этим хищникам для охоты: они якобы сгоняют добычу (к примеру, сельдь) в стаю и глушат…
ДОМЕН (НАДЦАРСТВО), в некоторых системах классификации - категория, которую считают стоящей выше, чем царство. Данный термин был предложен в 1990 г. Карлом Вёзе. Согласно такой системе, два подцарства ПРОКАРИОТОВ (АРХЕОБАКТЕРИИ и ЭУКАРИОТЫ)…
Ви́рус (от лат. virus — яд, ядовитое начало) — мельчайшие возбудители инфекционных болезней (рис. 1). До конца 19 в. термин «вирус» использовался в медицине для обозначения любого инфекционного агента, вызывающего…
Планета 55 Рака e, «суперземля», расположенная в системе солнцеподобной звезды HD 75732 (она же 55 Рака, спектральный класс G8V), была открыта в 2004 году. Это одна из самых близких к…
Палеогенетики открыли вещественные свидетельства того, что древние жители Тибетского плато одомашнили яков и начали скрещивать их с крупным рогатым скотом примерно 2,5 тыс. лет назад, что впервые подтвердило ранее озвученные…
Полмиллиарда лет назад Мировой океан патрулировали свирепые хищники, походившие на креветок. Не позавидуешь тем, кто оказывался в их острых когтях. Но по крайней мере один представитель этого семейства Anomalocarididae был, скажем так,…
Подтип: Позвоночные (Vertebrata) Научная классификация Без ранга: Вторичноротые (Deuterostomia) Тип: Хордовые (Chordata) Подтип: Позвоночные (Vertebrata) Инфратип: Челюстноротые (Gnathostomata) Безчелюстные (Agnatha) Оглавление 1. Общие сведения о Позвоночных животных 2. Происхождение Позвоночных животных 3. Классификация Позвоночных животных 1. Общие сведения о Позвоночных (Vertebrata) животных Позвоночные животные относятся к типу хордовых и включают около…