Когда теории тектоники плит ещё не было, шла дискуссия о том, движутся ли континенты Земли. Самое подробное и самое известное обоснование движению континентов было дано Альфредом Вегенером в начале XX века. Ему справедливо возразили, что он не смог предложить механизма, стимулирующего этот «дрейф континентов».
Исландия — часть срединно-океанического хребта, где литосферные плиты расходятся в стороны и образуется новая кора, вздымаясь над уровнем моря. (Фото Howard Ignatius.) Пробел в 1928 году восполнил Артур Холмс: конвекция породы в мантии тянет за собою литосферные плиты. Когда тектоника плит была принята в качестве основной геологической теории, это объяснение получило всеобщее признание. Однако альтернативные гипотезы продолжали появляться. Одна из них гласит, что понижение океанических плит в зонах субдукции (из-за разницы в плотности) производит силу, которая растягивает часть плиты, всё ещё находящуюся на поверхности. Когда плиты перемещаются, они тянут за собой соседнюю мантию.
Сегодня благодаря очень точным наблюдениям у исследователей есть доказательства, что по крайней мере в одном месте именно мантия стимулирует движение плиты, а не движима ею. Если то же самое будет обнаружено в других местах, нас ждёт решение одного из самых старых вопросов в геологической теории.
По сути, дискуссия ведётся о роли этих факторов. Можно сосредоточиться на одной из частей вопроса, а именно на том, как в мантии поднимается горячая порода, что приводит к вулканической активности в срединно-океанических хребтах. Причина в самой мантии или в движении океанической плиты, из-за которого возникает разрыв в земной коре, заполняющийся горячей породой из мантии?
Ответа до сих пор нет отчасти из-за того, что изучение мантии — дело нелёгкое. Зато у нас есть постоянно совершенствующаяся технология сейсмического исследования строения мантии. И с её помощью группа японских учёных во главе с Сюити Кодайра сумела составить очень подробную карту древнего участка коры у побережья Японии.
Геологи провели измерения вдоль двух линий — параллельно срединно-океаническому хребту (сейчас он лежит ниже Японии), где формировалась кора, и перпендикулярно к нему. Выявлено местоположение показательных слоёв в породе, которые отразили часть сейсмической энергии. Кроме того, была учтена скорость прохождения сейсмических волн через различные области: этот показатель свидетельствует о составе, структуре и температуре породы.
Полученные изображения продемонстрировали ряд равномерно сменяющих друг друга поверхностей, наклонённых по отношению к древнему хребту, как книги на полупустой полке. Они начинаются на границе мантии и идут в океаническую плиту. Верхняя часть мантии обладает большой «сейсмической анизотропией», то есть сейсмические волны проходят быстрее в одном направлении, чем в другом.
Анизотропия — результат, вероятно, выравнивания минеральных кристаллов, составляющих породу мантии. Почему они выровнены? Представьте себе, что вы добавили в тесто карамельную крошку. Если вы раскатывали тесто в одном направлении, то расположение крошки отразит этот факт. Следовательно, мантию тоже растягивали в одном направлении.
Из сказанного следует, что мантия и кора двигались в одном направлении (прочь от срединно-океанического хребта), но с различной скоростью. Кто же был быстрее, кто кого тянул за собой?
Тут-то исследователям и помогли наклонённые поверхности. Их замечали и прежде, объясняя по-разному: разломы, слои базальта, результат различия в скорости мантии и коры. Новые детали говорят в пользу последнего из вариантов: поверхности напоминают хорошо известный тип деформации, вызываемый напряжением сдвига.
В данном случае мантия перемещалась быстрее, чем океаническая плита. Иными словами, мантия тащила за собой плиту, а не наоборот. Мантия именно приводила в движение процессы в срединно-океаническом хребте, а не пассивно отвечала на движение плит.
Разумеется, подобное исследование следует повторить в других местах, чтобы доказать его состоятельность. Пока ничего не доказано и не опровергнуто, просто получена новая информация, с которой предстоит работать и работать.
Результаты исследования опубликованы в журнале Nature Geoscience.
Источник: КОМПЬЮЛЕНТА
Геологи выяснили, что наша планета обзавелась твердой корой почти сразу после своего возникновения. Это значит, что Земля была пригодной для жизни уже практически изначально.
Земля 4,3 млрд лет назадРезультаты исследования, проведенного американскими учеными из Висконскинского университета, опубликованы в журнале Nature Geoscience.
Планета Земля сформировалась около 4,6 миллиардов лет назад. Считается, что долгое время она представляла собой шар из расплавленной магмы, на котором не могли существовать никакие живые организмы. Авторы статьи поставили под сомнение этот взгляд, проанализировав цирконы, извлеченные из песчаников в Западной Австралии.
Цирконы - это микроскопические кристаллики древних минералов, включенные в состав более молодых пород. С помощью уран-свинцового радиоизотопного метода исследователи показали, что возраст изученных ими цирконов составляет 4,4 миллиарда лет. Это значит, что уже тогда земная кора была частично отвердевшей.
Уран-свинцовый метод основан на том, что с течением времени изотопы урана превращаются в изотопы свинца. Ученые отмечают, что в кристаллах циркона им встретились отдельные кластеры, обогащенные изотопами свинца, что свидетельствует об их относительной «молодости». Вероятно, они попали в кристаллы при их вторичной переплавке.
«У нас нет доказательств, что жизнь существовала на Земле на первых этапах ее истории, однако теоретически ничто не мешало ей появиться уже 4,3 миллиарда лет назад», -- пояснил Джон Уэллей, соавтор статьи. По словам исследователей, земная кора отвердела вскоре после гипотетического столкновения расплавленной Земли с другим небесным телом, в результате которого появилась Луна.
Источник: infox.ru
Химические остатки участка земной коры, погрузившегося глубоко в мантию, со временем могут вновь выйти на поверхность в совершенно другом месте — например, на каком-нибудь далёком вулканическом острове.
Остатки земной коры, затонувшей около 2,5 млрд лет назад, вновь поднялись благодаря восходящему потоку в мантии. (Иллюстрация Nature.)Анализ вулканической породы на одном из островов южной части Тихого океана позволил учёным предположить, что этот процесс занимает более 2 млрд лет.
Соавтор Рита Кабраль из Бостонского университета (США) отмечает, что химический и изотопный состав мантии варьируется от места к месту. Возможно, это результат опускания кусков коры, но конкретных доказательств тому до сих пор получено не было.
За ними исследователи отправились на остров Мангаиа — самый южный из островов Кука. Местные вулканические породы, сформированные около 20 млн лет назад, сильно выветрились, но сернистые минералы, заключённые в кристаллах оливина, устойчивых к выветриванию и сформировавшихся на глубине в несколько километров, всё ещё хранят ту «химию», которая предшествовала извержению, что вывело их на поверхность планеты.
А состав красноречив! Например, г-жа Кабраль отмечает, что доля изотопа серы-33 много ниже показателя, типичного для земной коры. Хотя к этой аномалии могут привести и биологические процессы, последние одновременно создали бы аномально высокую концентрацию серы-34, но в образцах с Мангаиа этого нет.
Наиболее вероятным источником пород, бедных серой-33, учёные считают мантийный материал, который содержит остатки коры, затонувшей или иным образом оказавшейся под поверхностью планеты по крайней мере 2,45 млрд лет назад, ещё до того, как фотосинтезирующие организмы приступили к накачиванию атмосферы кислородом. Когда кислорода было мало, химические реакции, протекавшие под действием солнечного света, естественным образом должны были создать сернистые соединения с малым содержанием серы-33. Позднее озоновый слой, ставший результатом кислородной катастрофы, подавил эти процессы.
В какой-то момент материал с границы коры и мантии поднялся вновь вместе с так называемым мантийным плюмом (восходящим потоком). Г-жа Кабраль просит обратить внимание на малую интенсивность перемешивания материала в мантии, ведь этот кусок породы вышел обратно на поверхность почти в том же виде, в каком затонул. Возможно, в мантии можно найти целое «кладбище» не тронутых временем древних литосферных плит.
Можно ли считать полученные данные свидетельством существования тектоники по крайней мере 2,45 млрд лет назад? Исследователи не спешат делать такой вывод. По их мнению, в то время планета была ещё молода и горяча, поэтому данный участок коры мог затонуть не из-за субдукции (захождения одной литосферной плиты под другую, как это происходит сегодня), а каким-то иным образом. Действительно, геохимик Роберт Стерн из Техасского университета в Далласе (США) полагает, что материал с низким содержанием серы-33 мог образоваться не на поверхности Земли, а в «подбрюшье» континентальной коры, после чего отвалиться и затонуть в мантии. Нечто подобное кое-где случается и сейчас.
Результаты исследования опубликованы в журнале Nature.
Источник: КОМПЬЮЛЕНТА
Земная кора неоднородна: она подразделяется на более лёгкую континентальную и плотную океаническую. Первая толще (30–40 км) как раз за счёт своей лёгкости; именно это позволяет ей настолько возвышаться, плавая в мантии.
По общепринятым представлениям, тектонические плиты сталкиваются, океаническая кора погружается в мантию, где на определённой глубине частично плавится, после чего расплавленная порода снова возносится на поверхность. Так формируются континенты.
Состав континентальной коры соответствует таковому коры океанической, которая расплавилась настолько, что от неё осталось 10–30%. К сожалению, концентрации основных химических компонентов в повторно затвердевшей породе не позволяют судить о том, на какой глубине происходило смешивание. Необходимо знать, каким был состав остальных 70–90%.
Дабы нащупать подходы к решению этой проблемы, Торстен Нагель из Боннского университета и Карстен Мюнкер из Кёльнского университета (оба — ФРГ) проанализировали старейшие (3,8 млрд лет) образцы континентальной коры, которые находятся в западной части Гренландии.
Прежде чем магма отделится от коренной подстилающей породы, полужидкая порода и остаток твёрдых минералов активно обмениваются микропримесями. «У каждого минерала — свой способ отделения при плавлении рассеянных элементов, — поясняет соавтор Элис Хоффманн из Боннского университета. — Иными словами, концентрация микроэлементов в расплаве указывает на состав остаточной коренной породы».
Ну а концентрация микропримесей в старейшей континентальной породе должна была позволить учёным реконструировать первоначальную коренную породу, чтобы выяснить, на какой глубине образовалась континентальная кора.
Исследователи провели компьютерное моделирование состава коренных и расплавленных пород, которые могли возникнуть в результате частичного плавления океанической коры на различной глубине и при различной температуре. Результаты сравнили с наличной концентрацией микропримесей в старейших континентальных породах.
Выяснилось, что кора первых континентов, скорее всего, сформировалась на глубине 30–40 км. И это означает, что в архее океаническая кора могла в некотором смысле «сочиться» континентальными породами, поскольку 4 млрд лет назад Земля была ещё довольно горяча.
Выходит, первые континенты возникали вовсе не в зонах субдукции (кстати, есть сомнения, что эти зоны в то время существовали).
Источник: КОМПЬЮЛЕНТА
10-05-2011 Просмотров:13087 Новости Зоологии Антоненко Андрей
Ученые из США и Канады выяснили, что появление в процессе эволюции эусоциальности у общественных насекомых, судя по всему, происходило разными путями. В качестве доказательства они представили модель изменения геномов у...
08-11-2017 Просмотров:3329 Новости Микологии Антоненко Андрей
Ученые выяснили, как паразитическим грибам удается манипулировать поведением муравьев. Оказалось, грибы строят в теле муравья трехмерную сеть из гифов (грибных нитей), но при этом оставляют его мозг нетронутым. Мышечное волокно муравья,...
23-01-2014 Просмотров:8622 Новости Палеонтологии Антоненко Андрей
Окаменевшие остатки древней рептилии из группы проторозавров обнаружили ученые в триасовых отложениях южного Китая. К удивлению палеонтологов, у этого родственника знаменитых танистрофеев было длинное, вытянутое рыло, более подходящее скорее ихтиозаврам. Триасовый...
12-03-2011 Просмотров:11993 Новости Зоологии Антоненко Андрей
Непрерывные сигналы делают некоторые виды этих млекопитающих более искусными охотниками на насекомых, чем их сородичи, испускающие прерывистый ультразвук. Подковоносы охотятся более умело благодаря непрерывному сканированию окрестностей. (Фото Frank Greenaway.)О том, что...
17-05-2011 Просмотров:11428 Новости Астрономии Антоненко Андрей
Моделирование одной из ближайших экзопланет показало, что на её поверхности могут существовать водяные океаны, а в атмосфере — облака и осадки. И пусть обстановка в этом мире всё равно довольно...
Новое доказательство того, что не все динозавры вымерли на рубеже мелового и палеогенового периодов, обнаружили британские палеонтологи. По их мнению, как минимум несколько экстремально мелких видов динозавров пережили глобальное вымирание,…
Трудно представить себе более странную дружбу, чем та, что существует между муравьями Camponotus schmitzi и насекомоядным растением Nepenthes bicalcarata! Ловчий кувшин N. bicalcarata. (Фото sudha_singh.)Растение это, как и другие виды непентесов,…
Все знают игру в «горячо/холодно», когда один ищет некий предмет (как вариант — угадывает некое слово-понятие), а другой направляет его поиски, говоря «горячо» или «холодно», когда напарник приближается к цели…
Пелядь - обитатель рек и озер. В Енисее встречается от устья до места впадения р. Сым (1632 км от устья). Населяет реки, пойменные и материковые озера бассейна среднего и нижнего…
Ученые обнаружили в древнейших образцах неандертальской ДНК с Алтая вкрапления человеческого генома, которые говорят нам о том, что первые люди проникли в Азию уже 100 тысяч лет назад, задолго до миграции кроманьонцев в Европу, говорится в статье,…
Американские палеонтологи обнаружили в китайской провинции Юньнань кости одной из крупнейших выдр. Гигантская выдраНовый вид получил название Siamogale melilutra. Результаты исследования опубликованы в журнале The Journal of Systematic Paleontology. Кости доисторического животного были…
Ботаники открыли принципиально новую систему опыления. В цветках кустарников, растущих в Андах, они обнаружили особые «взрывающиеся» придатки, которые обсыпают пыльцой птиц-опылителей. Об этом говорится в статье австрийских ученых из Венского университета, опубликованной в…
Клюв, как у утки, и гребень, как у петуха. Кто бы это мог быть? Конечно, динозавр! Австралийский палеонтолог Фил Белл нашел в Канаде уникальные по сохранности остатки гадрозавра Edmontosaurus regalis,…
Таким образом, детеныши получают полноценное питание, которое содержит здоровую дозу микробов, необходимых им для выживания в условиях дикой природы, полагают исследователи. Самец чилийской игуаныЯщерицы, как группа пресмыкающихся, не особо радеют о подрастающем…