Мир дикой природы на wwlife.ru
Вы находитесь здесь:Все добавления>>Мир дикой природы на wwlife.ru - Показать содержимое по тегу: Криогеновый период

Понедельник, 27 Январь 2020 11:50

Ученые нашли древнейшие грибы на Земле

Ученые с помощью современных молекулярных методов нашли следы древнейших грибов в породах неопротерозойского возраста (715−810 миллионов лет). Это на 250 миллионов лет старше любых других известных окаменелостей грибов. Описание приведено в журнале Science Advances.

270120Грибы были одними из первых организмов, колонизировавших сушу. Формируя обширные микроскопические нитевидные сети — мицелии — грибы усиливали разрушение верхнего слоя горных пород, играя важнейшую роль в формировании почвенного покрова и обогащении его питательными веществами. Это открыло путь на сушу растениям и животным, до этого обитавшим исключительно в водной среде.

Учитывая роль, которую играли грибы в эволюции жизни на Земле, важно понимать, когда они появились на суше. А относительно этого у ученых нет единого мнения. Считается, что грибы колонизировали сушу в период от 810 до 443 миллионов лет (от неопротерозоя до ордовика). Однако достоверные факты находок до последнего времени были подтверждены только для окаменелостей возрастом 455-460 миллионов лет.

Результаты недавнего исследования, которое провели ученые из Бельгии, США, Великобритании и Германии, показывает, что эти организмы существовали на суше уже 715−810 миллионов лет назад, задолго до появления сложных организмов. Окаменелости древнейших грибов найдены учеными в неопротерозойских доломитовых сланцах из Конго.

Сначала образцы ошибочно идентифицировали как цианобактерии и отправили в коллекцию Королевского музея Центральной Африки в Тервурене (Бельгия), где ими заинтересовался палеонтолог Стив Бонневиль (Steeve Bonneville) из Брюссельского свободного университета.

Чтобы доказать, что пронизывающие сланцы окаменелые "нити" — это мицелий древних грибов, а не нитчатые водоросли, исследователям нужно было найти хитин — полисахарид, входящий в состав клеточной стенки грибов. Для этого они использовали набор микроскопических и спектроскопических методов.

Сначала хитин был обнаружен учеными с помощью метода конфокальной лазерной сканирующей флуоресцентной микроскопии. Чтобы сделать вещество видимым под микроскопом, ученые использовали флуоресцентный краситель — изотиоцианат флуоресцеина, который связывается с уникальным для грибов хитином. В результате стенки нитей мицелия светятся на микроснимке зеленым светом.

Для подтверждения открытия ученые использовали синхротрон — ускоритель частиц, в котором материал бомбардируется быстрыми атомами, чтобы узнать тонкие детали его химического состава и строения биологического вещества.

Все эти методы явным образом подтвердили наличие хитина в ископаемых нитевидных сетях, а клеточный анализ, что это были эукариоты — организмы, клетки которых содержали ядро.

"Найденные и исследованные окаменелости подтверждают возможность того, что грибы помогли заселить поверхность земли, и существовали почти за 300 миллионов лет до появления первых наземных растений, — приводятся в пресс-релизе слова Бонневиля. — Это изменит наше понимание о том, как развивалась поверхность земли и как появились растения и грибы".

В эпоху неопротерозоя, когда жили эти грибы, суша была голой, лишь в прибрежной зоне и мелких водоемах развивались бактериальные пленки цианобактерий. Возможно, продуктами разложения этих пленок и питались первые грибы.

Ученые предполагают, что уже тогда грибы могли образовывать симбиоз с фотосинтезирующими бактериями. А это значит, что уже тогда могли существовать лишайники — сложные организмы, представляющие собой симбиотические ассоциации грибов и микроскопических зеленых водорослей, способные выживать в самых экстремальных условиях.

А это существенным образом меняет взгляд на этапы эволюционного развития жизни на Земле.


Источник: РИА Новости


Опубликовано в Новости Палеонтологии

Первые многоклеточные живые существа появились на Земле примерно 650 миллионов лет назад благодаря двум событиям – появлению планктона и других водорослей и временному превращению Земли в "ледышку", говорится в статье, опубликованной в журнале Nature.

Фауна кембрийского периоды"Молекулы жиров, которые мы нашли в породах эдиакарского периода, говорят нам о том, что жизнь в водах первичного океана Земли стала реально интересной примерно 650 миллионов лет назад. В то время произошла настоящая экологическая революция, своеобразное восстание водорослей", — рассказывает Йохен Брокс (Jochen Brocks) из Национального университета Австралии в Канберре.

Сегодня ученые считают, что жизнь могла появиться на Земле уже три миллиарда лет назад, однако первые 2,5 миллиарда лет своего существования она провела исключительно в одноклеточной форме. Первые многоклеточные существа предположительно появились лишь 600-650 миллионов лет назад, во время эдиакарского периода, и об их жизни, благодаря почти полному отсутствию их останков, мы почти ничего не знаем.

Одной из главных тайн зарождения современной многоклеточной жизни является вопрос о том, как возникла "основа" современной пищевой пирамиды – одноклеточные водоросли, главные зеленые "легкие" планеты. Проблема заключается в том, что фотосинтезирующие организмы существуют на Земле очень давно, около двух миллиардов лет, и ученые пока не понимают, что заставило часть архей превратиться в предков современного планктона, и как это событие повлияло на эволюцию остальной жизни.

Брокс и его коллеги нашли первое вещественное доказательство того, что первые водоросли появились практически одновременно с первыми многоклеточными существами, изучая отложения осадочных пород, сформировавшиеся примерно 660 миллионов лет назад на дне первичного океана Земли на том месте, где в будущем возникнет центральная часть Австралии.

В этих породах, как рассказывает Брокс, его команда нашла достаточно большое количество жировых молекул, которые содержатся в большом количестве в клетках животных и растений, но отсутствуют внутри клеточных стенок микробов, в том числе и фотосинтезирующих цианобактерий и архей.

Это открытие, а также обнаружение следов другого важного события той эпохи в этих породах, дало ответ на вопрос о том, что заставило миниатюрных бактерий, способных размножаться быстрее, чем крупные водоросли, при недостатке нутриентов, уступить место планктону и позволить многоклеточной жизни начать свое развитие.

Дело в том, что породы, которые изучали Брокс и его коллеги, сформировались в то время, когда Земля начала постепенно оттаивать после превращения в полную "ледышку" около 850 миллионов лет назад. Причиной этого, как сегодня считают ученые, было появление первых фотосинтезирующих организмов, очистивших атмосферу планеты от парниковых газов.

Когда Земля начала оттаивать, в ее первичный океан попало гигантское количество фосфора и других нутриентов из горных пород, перемолотых наступающими и отступающими ледниками. Этот фосфор, соответственно, помог планктону одержать победу над фотосинтезирующими бактериями и запустил самоподдерживающуюся реакцию, благодаря которой уровень СО2 в атмосфере планеты почти не менялся на протяжении последних 550 миллионов лет.

"Эти крупные и питательные организмы, расположенные в основании цепей питания, подарили Земле тот всплеск энергии, который был необходим для эволюции сложных экосистем, в которых могли возникнуть и процветать все более сложные многоклеточные существа, в том числе и человек", — заключает ученый.


Источник: РИА Новости


 

Опубликовано в Новости Палеонтологии

Британские ученые выяснили, что Земля 720-640 тысяч лет назад представляла собой не замороженный "снежок", как считают геологи сегодня, а была похожа Европу и Энцелад, спутники Юпитера и Сатурна с их подледными океанами и вулканами, говорится в статье, опубликованной в журнале Nature Geoscience.

Так выглядела Земля 850 миллионов лет назадТак выглядела Земля 850 миллионов лет назадГипотеза "белой Земли", или Земли-"снежка" (snowball Earth) предполагает, что в один из периодов неопротерозойской эры, примерно 625-850 миллионов лет назад, планета "промерзла" вплоть до экватора. Существуют разные версии этой гипотезы — от "слякотной", по которой океан у экватора оттаивал, по крайней мере, на несколько месяцев в году, до "ледышки", когда льдом была покрыта абсолютно вся земная поверхность.

До настоящего времени ученые считали, что Земля вряд ли промерзла полностью, так как в таком случае даже массированных выбросов СО2 и других парниковых газов не должно было хватить для того, чтобы растопить все льды. В пользу этого говорит то, что в некоторых регионах Земли можно найти типично "водные" отложения щелочных пород, сформировавшиеся в это время. Тем не менее, сам механизм поддержания океанов в жидком виде оставался неясным.

Том Гернон из университета Саутхемптона (Великобритания) и его коллеги выяснили, что на самом деле Земля была похожа не на "снежок", а была своеобразным аналогом "водных" лун Юпитера и Сатурна, воссоздав на компьютере одно из ключевых событий этой эпохи – разлом Родинии, первого суперконтинента в истории нашей планеты.

"Когда вулканические породы выбрасываются на поверхность дна океанов, они проходят цикл крайне быстрых и сильных химических изменений, которые сильно меняют биогеохимию океанических вод. Мы выяснили, что многие геологические и геохимические феномены, связанные с эпохой Земли-"снежка", хорошо укладываются в идею обильных извержений подводных вулканов на кромках срединно-океанических хребтов", — заявил ученый.

Команда Гернона проверила эту идею, создав компьютерную модель распада Родинии и связанных с этим извержений вулканов. Эти расчеты показали, что вулканы выбрасывали огромное количество тепла и целый ряд химических веществ, преобразовавших облик подледного океана Земли.

Взаимодействие выбрасываемых пород и воды приводило к осаждению и формированию огромного количества так называемых гиалокластитов – пород, содержащих большое количество ионов фосфора, кальция и целого ряда других щелочных металлов. Гиалокластиты нестабильны по своей химической природе. Они быстро превращаются в своеобразное "стекло", из которого вымываются все ионы, что делает окружающую воду более щелочной.

Парадоксальным образом, эти ионы мешали вулканам растапливать Землю, так как они служили своеобразным "буфером", поглощавшим большую часть углекислого газа, которые выбрасывались из недр планеты, и превращавшим их в отложения карбонатов на дне океана. Благодаря этому доля СО2 в атмосфере росла медленно, и Земля провела в "ледниковом периоде" свыше 200 миллионов лет.

Подобное свойство – теплая и очень щелочная вода – делало древнюю Землю очень похожей на то, каким сегодня выглядит Энцелад, спутник Сатурна, чей подледный океан обладает аналогичными свойствами. Это в принципе позволяет использовать ископаемые данные с Земли и данные современных наблюдений для оценки пригодности таких океанов к жизни и условий в них.


Источник: РИА Новости


Опубликовано в Новости Геологии

Климат Земли не расстилал красный коврик первой многоклеточной жизни. Кембрийскому взрыву предшествовал криогений, во время которого лёд, возможно, дважды сковывал всю планету целиком. Кембрий, напротив, превратил Землю в теплицу: атмосферная концентрация углекислого газа с тех пор никогда не была настолько высокой. Затем вновь похолодало, хотя до уровня морозильника температура больше не опускалась. 

Гора Шаста в Калифорнии, входящая в систему Каскадных гор — континентальной дуги (фото NASA Earth Observatory). Гора Шаста в Калифорнии, входящая в систему Каскадных гор — континентальной дуги (фото NASA Earth Observatory). Кое-какие данные о тогдашней температуре и атмосферном уровне углекислого газа сохранились, но трудно сказать, по каким причинам в то время происходили изменения. Геолог Райан Маккензи из Техасского университета в Остине (США) и его коллеги попытались разобраться в свидетельствах вулканической активности того периода, ибо это основной источник CO2 в геологической летописи. Чтобы это сделать, пришлось поискать множество иголок в самых разных стогах сена.

В магматических породах, таких как гранит и его вулканический двойник риолит, можно найти крошечные кристаллы минерала под названием циркон. Циркон — лучший друг геолога во многих отношениях. В его ловушку попадают радиоактивный уран и свинец, и по их распаду можно в точности определить возраст кристалла. К тому же это удивительно прочный минерал, способный пережить эрозию, которая разрушает многие другие кристаллы. Самая старая часть Земли из когда-либо датированных — миниатюрная крупинка циркона возрастом 4,4 млрд лет, найденная в осадочной породе, которая сформировалась «всего лишь» около 3 млрд лет назад. 

Цирконы — это летопись характеристик магматических пород, в которых они сформировались. Иными словами, они могут рассказать исследователям о вулканах, которые произвели их на свет. Поскольку вулканы вдоль зон субдукции — наиболее распространённый источник тех видов магматических пород, которые включают в себя цирконы, последние способны указать на местоположение этих вулканов, даже если с тех пор попали в осадочные породы. 

Исследователи свели результаты анализа цирконов в осадочных породах всего мира в один набор данных. Возраст цирконов говорит о том, когда континентальные дуги вулканов были активны вдоль зон субдукции. А когда вулканы работают, они не только формируют новые вулканические породы, но и извергают CO2 и, следовательно, влияют на климат. 

Таким образом удалось обнаружить низкую активность континентальных дуг во время ледниковых периодов криогения, пик активности в кембрийском периоде и последующее снижение. Иными словами, вулканическая активность повышалась во время тёплых периодов, когда рос уровень CO2 в атмосфере, и снижалась в холодные периоды. 

В прошлом году аналогичная корреляция была описана для мелового периода. Утверждалось, что, поскольку тектоника плит привела к более активному формированию континентальных дуг, вулканическая деятельность могла освободить CO2 из карбонатных пород вдоль границ континентов. Вопреки предыдущим гипотезам, новая идея гласит, что континентальные дуги — более важный источник атмосферного CO2, чем подводный вулканизм срединно-океанических хребтов. 

Когда кембрийский период подошёл к концу, сложился суперконтинент Гондвана (позднее ставший южной половиной Пангеи). Поскольку моря, разделявшие части будущей Гондваны, оказались закрыты, субдукция остановилась, и континентальные дуги утихли. 

Исследователи указывают на Гималаи как пример такого явления, но в меньшем масштабе. Индийский субконтинент был соседом Австралии, когда образовалась Пангея. Когда же она распалась, Индия пошла на север, толкая перед собой океанскую кору и создавая тем самым вулканическую дугу на переднем крае своего движения. Однако к тому времени, когда Индия столкнулась с Евразией, уже не было никакой океанской коры, поэтому субдукция не состоялась — и вулканы, некогда возвышавшиеся по обе стороны исчезнувшего моря, остались без топлива. 

Одного этого было достаточно, чтобы снизить выделение углекислого газа в атмосферу. Кроме того, сжатие континентальных плит привело к образованию горной цепи внушительных размеров, которая быстро разрушалась, и силикатные породы, распадаясь, впитывали CO2. Результатом стало значительное уменьшение CO2 в атмосфере. 

Собирание Гондваны было лишь одним из многих столкновений, происходивших в то время. Континентальные арки, спавшие в криогении, воспламенились, когда континенты начали двигаться друг к другу, выбрасывая в воздух CO2 и нагревая планету. Когда континенты столкнулись, вулканическая активность прекратилась, и эрозия, возможно, помогла охладить Землю. 

Таким образом, вполне вероятно, что континентальные дуги сыграли важную роль в изменении климата в течение этого времени, то есть климатические экстремумы были неизбежным следствием тектоники плит. И, соответственно, тектоника плит определила состояние биосферы. Многоклеточные организмы впервые появляются в палеонтологической летописи в период криогения и начинают бурно развиваться с потеплением. В кембрии, однако, на пике жары происходит несколько массовых вымираний. Когда мир немного остыл, жизнь снова начала процветать и разносторонне развиваться. 

Возможно, тектоника плит и изменения климата были не только злодеями. Некоторые исследователи полагают, что эти факторы ответственны также за появление скелетов из карбоната кальция — событие, сыгравшее ключевую роль в кембрийском взрыве. 

Результаты исследования опубликованы в журнале Geology.


Опубликовано в Новости Геологии

  

Оглавление

1.

Общие сведения о животных

1.1.

Разделение классификации животных

2.

Появление и эволюция животных

2.1.

Протерозой. Довендская биота. Животный мир вендского периода (эдикария) 

2.2.

Фанерозой. Животный мир кембрийского периода. Кембрийский взрыв 

2.3.

Животный мир ордовикского периода

2.4.

Животный мир силурийского периода

2.5.

Животный мир девонского периода

2.6.

Животный мир каменноугольного периода

2.7.

Животный мир пермского периода

2.8.

Животный мир триасового периода

2.9.

Животный мир юрского периода

2.10.

Животный мир мелового периода

2.11.

Животный мир палеогенного периода

2.12.

Животный мир неогенного периода

2.13.

Животный мир четвертичного периода

2.1 Животный мир протерозоя. Довендская биота. Животный мир вендского периода (эдикария)

Считается, что первые простейшие животные возникли в конце протерозойской эры - 700 млн лет назад (в некоторых публикациях указывается дата 1,4 млрд. лет назад или даже 2 млрд.лет назад).

В следствии большой распростроненности цианобактерий и водорослей резко возростает содержание кислорода в атмосфере Земли, что приводит к возможности появления таких существ, как животные. Безконтрольный рост кислорода и уменьшение парниковых газов в криогеновом периоде приводит к череде глобальных похолоданий (в период с 750 до 580 млн. лет назад) покрывших землю слоем льда толщиной до двух километров. Каждое оледениние могло длиться от 4 до 30 млн. лет. Оледенения заканчивались катастрофически быстро, когда благодаря наземному вулканизму в атмосфере накапливалось высокое содержание углекислого газа, более чем в триста раз превышающее его современный уровень. 

Колония хоанофлагелляты SphaeroecaРис. 2.1 Колония хоанофлагелляты SphaeroecaПредположительно первоначально в многоклеточные структуры объединялись простейшие хоанофлагеллаты (рис. 2.1), которые, как полагают, стоят на грани между одноклеточностью и многоклеточностью, образуют зародышеобразные колонии только с помощью бактериального липида, который получают из съеденных бактерий (прокариот). Следующим щагом было появление в этом же периоде первых настоящих многоклеточных макроогранизмов - эти организмы появились на Земле сразу после Мариноанского оледенения – одной из стадий глобального оледенения, когда нашу планету в течение многих миллионов лет сплошь покрывали льды. Первые многоклеточные существа были мягкотелыми организмами, состоящими из отдельных фракталов.

Одни из самых первых появившихся на Земле животных относятся к криогеновому периоду. Эти организмы по размерам были меньше эдикарских и являются не лентовидными, а червеобразными (иногда похожи на членистых). Многие из них строили из органики сегментированные трубки бакаловидной формы. Среди этих организмов нет ни медузоподобных "дисков" как в эдикаре, так и форм похожих на губки (примитивнейших из ныне живущих групп животных). Судя по всему, довендская хайнаньская биота не может считаться предковой ни для эдикарской, ни тем более для современной - фанерозойской [1].

Рис.2.2 Этапы происхождения многоклеточности:  I, II—сферические колонии жгутиковых,  III—V—фагоцителлы разной степени сложности;  1—кинобласт, 2—рыхлый фагоцитобласт, 3—скопление  чувствительных клеток на переднем конце тела, 4—ротовое отверстие, 5—половые клетки,  6—эпителизованный фагоцитобласт Рис.2.2 Этапы происхождения многоклеточности: I, II—сферические колонии жгутиковых, III—V—фагоцителлы разной степени сложности; 1—кинобласт, 2—рыхлый фагоцитобласт, 3—скопление чувствительных клеток на переднем конце тела, 4—ротовое отверстие, 5—половые клетки, 6—эпителизованный фагоцитобласт Родоначальником многоклеточных в настоящее время считают шаровидную колонию жгутиковых, половые клетки которых перемещались в глубь колонии, а соматические первично выполняли как функцию перемещения всей колонии в пространстве, так и пищеварения за счет переваривания фагоцитированных пищевых частиц, захваченных из воды.           

Осуществление одной и той же клеткой функций движения и пищеварения малоэффективно. С этим связана последующая специализация клеток в направлении преимущественно пищеварения или обеспечения движения. Результатом является возникновение фагоцитобласта (внутреннего слоя амебовидных клеток, занимающихся пищеварением) и кинобласта (наружного слоя клеток со жгутиками, обеспечивающими движение).
Стойкая дифференцировка соматических клеток по функциям и строению, возникшая первоначально на фоне выделения двух клеточных слоев, явилась ключевым моментом в происхождении многоклеточных. Именно с двуслойностью связано появление жидкой внутренней среды, через которую клетки обмениваются химическими сигналами, а также дальнейшее обособление и специализация части поверхностных клеток в направлении восприятия внешних раздражителей и передача возбуждения на другие клетки, располагающиеся в отдалении от них. Таким образом возникают предпосылки к формированию нервной системы.

Рис. 2.3. Трихоплакс - Самое примитивное  животное на свете похоже на медленно  ползающую тонкуюбесформенную пластинку. Рис. 2.3. Трихоплакс - Самое примитивное животное на свете похоже на медленно ползающую тонкуюбесформенную пластинку. Гипотетический предок многоклеточных животных назван фагоцителлой (рис. 2.2). Он плавал в толще воды за счет биения ресничек кинобласта, а питался, захватывая взвешенные в среде частички пищи и переваривая их клетками фагоцитобласта. На более поздних этапах эволюции происходили многочисленные адаптации потомков фагоцителлы к многообразным условиям существования при оседании их на дно или при перемещении к поверхности, а также при изменении источников питания (захват мелких или крупных, живых или мертвых пищевых частиц). [2]

Большое значение в эволюции потомков фагоцителлы имели также изменения характера движения: пассивное движение или прикрепленный образ жизни обусловливают лучевой тип симметрии, в то время как активное перемещение в определенном направлении предусматривает формирование двубоковой, или билатеральной, симметрии. В результате возникло огромное многообразие форм многоклеточных животных.[4]

По другой теории первым примитивным животным является - трихоплакс (рис. 2.3).

Это плоское создание, похожее на медленно ползающую кляксу, не имеет ни осей симметрии, ни мускулатуры, ни переднего и заднего концов, не говоря уже о таких сложных устройствах, как пищеварительная, нервная, кровеносная или выделительная система. Трихоплакс по своему строению напоминает личинок кишечнополостных, и его действительно довольно долго считали личинкой медузы. Но потом оказалось, что трихоплакс образует половые клетки и размножается половым путем.

Митохондриальный геном трихоплакса по своему строению занимает промежуточное положение между «ближайшими родственниками животных» (хоанофлагеллятами и грибами) с одной стороны и всеми остальными животными (включая губок и кишечнополостных) — с другой.[5]

Рис. 2.4. Гребневик. Рис. 2.4. Гребневик. Следующим этапом развития животных стало появление гребневиков (рис. 2.4).[6]

Дальнейшим развитием жизни - стало появление 635 млн лет назад (по некоторым данным 850 млн. лет назад) губок (рис. 2.5) развивавшиеся на морском дне, на мелководье, а затем распространившиеся в более глубокие воды.[7] 

До развития многоклеточных организмов на нашей планете повсеместно царствовали бактериальные сообщества, покрывая дно океана тонким слоем и выстраивая величественные строматолиты. Первые животные были вынуждены вести с ними жестокую борьбу за существование, получая птательные вещества с воды, им приходилось увеличивать свои габариты, что позволяло поглощать большее количества питательных веществ. [8]

Рис. 2.5. Семейство губок. Рис. 2.5. Семейство губок. Одними из наиболее древних находок многоклеточных животных являются археоциаты, а также рангеоморфы, такие, как Харния или чарния Charnia и Charnodiscus, многочисленны медузы (Beltanella, Medusinites, Cyclomedusa и проблематичные формы, близкие современным морским перьям (Rangea, Arborea) жившие в эдикарском периоде. На морском и океаническом дне в то время, обитало большое разнообразие кольчатых червей (известно 5 видов многощетинковых червей принадлежащих родам Сприггина (Spriggina) и Дикинсония (Dickinsonia), от которых в дальнейшем произошли моллюски и членистоногие. Кроме вышеперечисленных морских обитателей эдикария, встречались членистоногие-антроподы (Precambridium), являющиеся отдаленными предками ископаемых трилобитов, а также современных насекомых - пауков и скорпионов. Другими интересными животными эдикара являлись трибрахидиумы (Tribrachidium) которые до сих пор не нашли своей ниши в современой систематике. Некоторые из эдиакарских животных достигали больше метра в размере.

Рис. 2.6. Вендский период (Эдиакарийская биотика). Рис. 2.6. Вендский период (Эдиакарийская биотика). Вообще, в вендский период (рис. 2.6) образовалось большое количество мягкотелых животных не имеющих минерального скелета, останки которых, как уже говорилось, не дошли до наших дней. Тогда же появились первые кишечнополосные хищники.

Животные Эдиакар жили преимущественно на морском дне. Они кормились в слое органического вещества (детрита), который покрывал донный ил, образованный останками множества одноклеточных организмов, населявших толщу воды над ними. Плоские и кольчатые черви плавали над самым дном или ползали среди осадков. Спешить им было некуда, ибо хищников (животных, питающихся другими животными) здесь было очень мало.

Рис. 2.7. Животные Эдиакар (Вендский период). Все животные Эдиакар были мягкотелыми. Там обитало множество разновидностей медуз (1). Диксонии (2) и сприггины (3) были плоскими червеобразными существами. Сприггина имела вдоль боков множество крохотных плавательных пластинок, как у современных морских червей. Возможно, это животное- предок трилобитов. Харниодиск (4), ранге (5) и птеридиний, листообразные морские перья были колониями крохотных животных, похожих на гидр, которые отфильтровывали из воды частицы пищи. А вот трибрахидий (7) для нас полная загадка. У него был Y-образный центральный рот с щетинкообразными отростками. Возможно, он - предок современных иглокожих.
Рис. 2.7. Животные Эдиакар (Вендский период).
Морские перья поднимались с морского дна (рис. 2.7), подобно неким перообразным цветкам, тщательно отфильтровывая воду в поисках пищи. Трубчатые черви лежали среди донных отложений, шевеля своими щупальцами в насыщенной детритом воде. Примитивные иглокожие, родичи современных морских звезд и морских ежей, всю свою жизнь проводили в толстом слое ила. Было там и множество крупных плоских животных в форме блина; эти похожие на медуз создания также, судя по всему, обитали на илистом дне. А над ними в морской воде медленно проплывали настоящие медузы.

В Эдиакарских отложениях встречаются многочисленные окаменевшие отпечатки мягкотелых животных, ползавших когда-то по морскому дну. В некоторых местах в иле запечатлелись парные V-образные отметины, похожие на царапины, оставленные парами крохотных ножек. Возможно, это следы вышеупомянутых примитивных артропод, или членистоногих, - отдаленных предков ископаемых трилобитов, а также современных нам насекомых - пауков и скорпионов. Правда, твердых останков этих животных пока не обнаружено: по всей видимости, они еще не обзавелись твердым панцирем. [9]

Самые первые животные возникали в холодных водах, т.к. теплые мелководные бассейны, в частности, обширные моря покрывавшие континенты в рифее, контролировались архаичной прокариотной биотой вплоть до конца венда. Древние цианобактерии, как и современные, были способны защищать себя ядами, которые угнетают рост и размножение эукариот, а в ряде случаев приводят к гибели последних. Так что, колонизация высшими организмами тепловодных бассейнов была непростой задачей.

Первую попытку животных колонизовать тепловодный карбонатный бассейн мы наблюдаем на примере карбонатных отложений Оленекского поднятия (север Якутии). Когда по окончании Варангерского оледенения морские воды начали затапливать континент, животные быстро заняли теплые мелководные обитания. Вендские беспозвоночные довольно долго «удерживали свои позиции» – остатки мягкотелых беспозвоночных, преимущественно, кишечнополостных, в изобилии встречаются в битуминозных тонкослоистых известняках хатыспытской свиты в интервале более 100 метров. Трудно сказать точно, сколько длился этот эпизод, но цианобактериальные сообщества «взяли реванш» и надолго: толща строматолитовых пород туркутской свиты имеет мощность более 200 м. Судя по современным аналогам, строматолиты растут крайне медленно. Лишь в самом конце венда (542±1 млн. лет) и, особенно, в начале кембрийского периода сообщества животных получили возможность вернуться в свободные от строматолитов обитания.

Сезонность питания, характерную для высоких широт, можно рассматривать как фактор отбора в пользу форм с большей массой. Так называемая «резервная биомасса» нужна, чтобы переживать неблагоприятные периоды. Однако рост и размеры тела ограничиваются возможностью обменных процессов – прежде всего дыханием. Развитие гетеротрофии и эффективных способов сбора пищи могло реализоваться в создание резервной биомассы (больших размеров тела) только при условии достаточно высокой концентрации кислорода в воде. Холодноводные бассейны давали такое преимущество.

Путь из холодных вод, богатых кислородом, в теплые стал возможным в связи с резким ростом содержания свободного кислорода в атмосфере. Данные изотопного анализа углерода из позднего докембрия показывают, что это событие произошло в самом конце протерозоя.

Специалистам по кораллам известна одна замечательная закономерность: виды, имеющие симбиотические водоросли (их собирательное название – зооксантеллы) формируют прочный массивный скелет, и наоборот – виды без симбиотических водорослей имеют весьма слабую минерализацию скелета или не имеют минерального скелета вовсе. Как любая закономерность в мире живого, эта имеет массу исключений. Но представим вендскую фауну холодных вод, и станет ясно, что там не могло быть мощного минерального скелета по двум причинам: одна из них – низкая эффективности ферментов, ответственных за биоминерализацию, из-за низких температур; другая связана с высокой растворимостью карбоната в холодных водах, его труднее концентрировать и сохранять. Но, возможно была и третья причина – отсутствие зооксантелл у животных, обитающих в высоких широтах – там, где существуют долгие зимние ночи одноклеточным водорослям внутри живого тела выжить трудно. Колонизация тропиков и гарантированный световой день сделал симбиоз более эффективным в двух аспектах: снабжение кислородом хозяина и расширение возможностей биоминерализации.

Животные появились в относительно холодных водах вне карбонатного пояса планеты, который контролировался прокариотами. Эра великих оледенений давала большее преимущество именно эукариотам, в том числе, животным, хотя это было время их трудной эволюции. В эту холодную пору площади карбонатных бассейнов и ареалы прокариотных сообществ резко сократились. Высшие организмы, пережившие 200 млн. лет преимущественно холодной биосферы, по окончании ледниковой эры оказались способными бросить вызов архаичной бактериальной биоте и с начала кембрия прочно заняли тепловодные бассейны карбонатного пояса планеты, колонизировав тепловодные бассейноы карбонатного пояса планеты и постепенно заменяя карбонатные постройки цианобактерий рифами. Это обстоятельство резко ускорило эволюционные процессы, в том числе – на основе сформированного минерального скелета.

Рост разнообразия животных и эвкариот в целом способствовал удлинению пищевых цепей. Однако, в тканях животных, находящихся на вершине трофической пирамиды, могли накапливаться высокие концентрации ряда элементов, в частности, Ca, P, Si. Выведение минеральных солей или детоксикация стали необходимостью. Возможность строить минеральный скелет у части беспозвоночных была следствием детоксикации в условиях тепловодных местообитаний, где растворимость биоминералов ниже и энергетические затраты на биоминерализацию не так высоки, как в холодных водах. [10]

 

Животный мир протерозоя. Довендская биота. Животный мир вендского периода (эдикария)

<< Общие сведения о животных. Разделение классификации животных. Появление и эволюция животных <<

 |>> Фанерозой. Животный мир кембрийского периода. Кембрийский взрыв >>

 


 А.С.Антоненко


 

 

Источники:  1. Хайнаньская биота
2. Фагоцителла/ Fagocitella (Паренхимелла)
4. Экологический портал
5. Элементы
6. ScienceBlog.ru
7. PrimeInfo
8. Размер имеет значение.
9. Теория эволюции как она есть. Эдикар
10. Теория эволюции как она есть. Протерозой
Опубликовано в Животные (Animalia)

Учёные из Чикагского университета (University of Chicago) представили новое исследование, свидетельствующее в пользу так называемой Земли-снежка (Snowball Earth) – предполагаемого глобального оледенения, действовавшего на планете примерно 650-750 миллионов лет назад.

Красными точками показаны места  находок формаций, свидетельствующих  об оледенении, чей возраст соответствует  предполагаемому периоду "Snowball Earth".  Как видно, они встречаются по всему  миру (иллюстрация New Scientist)   Красными точками показаны места находок формаций, свидетельствующих об оледенении, чей возраст соответствует предполагаемому периоду "Snowball Earth". Как видно, они встречаются по всему миру (иллюстрация New Scientist) Новый эксперимент геологов должен был дать ответ на главный вопрос, возникающий у её противников: каким образом планета потом оттаяла, ведь снежно-ледяной покров хорошо отражает лучи, ещё больше усиливая охлаждение?

Диаграмма, демонстрирующая схему движения морских ледников  в эпоху "Snowball Earth", в итоге приведшего к накоплению пыли на  значительной части поверхности планеты. Ранее оттепель объясняли  появлением в атмосфере большого количества углекислого газа от вулканов.  Однако последние исследования показывают, что уровень СО2 в то время  составлял лишь десятую часть от требуемого для растапливания льда  количества (иллюстрация Goodman, Pierrehumbert/Chicago University)Диаграмма, демонстрирующая схему движения морских ледников в эпоху "Snowball Earth", в итоге приведшего к накоплению пыли на значительной части поверхности планеты. Ранее оттепель объясняли появлением в атмосфере большого количества углекислого газа от вулканов. Однако последние исследования показывают, что уровень СО2 в то время составлял лишь десятую часть от требуемого для растапливания льда количества (иллюстрация Goodman, Pierrehumbert/Chicago University)Дориан Эббот (Dorian Abbot) и Реймонд Пьергумберт (Raymond Pierrehumbert) использовали климатическое моделирование, чтобы изучить влияние пыли, попадавшей в атмосферу в результате вулканических извержений и выветривания горных пород.

Они обнаружили, что поверхность Земли в то время достаточно быстро загрязнялась, особенно в тех регионах, где редко выпадал снег. Её отражающие свойства при этом настолько сильно изменялись, что огромные участки планеты могли поглощать солнечный свет и постепенно растапливать лёд.

   Таким образом, утверждают учёные, загадка оттепели может быть легко решена, если признать, что наша планета была скорее "грязевым комком", нежели "снежком". Эту гипотезу геологи намереваются проверить, поискав ископаемую пыль в отложениях того периода. Статья чикагских специалистов опубликована в Journal of Geophysical Research – Atmospheres, а прочесть её можно здесь (PDF-документ). 


Источник: MEMBRANA


Опубликовано в Новости Геологии

Примерно с 750 до 650  миллионов лет назад  разбалансированный механизм  климата сделал нашу  планету такой, как на этой  картинке. Удивительно,  что жизнь ухитрилась тогда  не прерваться (иллюстрация  с сайта physicsworld.com) Примерно с 750 до 650 миллионов лет назад разбалансированный механизм климата сделал нашу планету такой, как на этой картинке. Удивительно, что жизнь ухитрилась тогда не прерваться (иллюстрация с сайта physicsworld.com)  Примерно 700 миллионов лет назад, когда глобальное оледенение было настолько мощным, что льды доходили до экватора, в океане оставались свободными небольшие районы. Ключ к выживанию биосферы в один из самых критических для неё моментов обнаружили учёные из Британии и Австралии.

Образцы отложений в Южной Австралии, относящиеся к стертовскому оледенению (это часть криогения), продемонстрировали специфический тип структуры (hummocky cross-stratification — HCS), формирующейся при содействии крупных штормов.Новые данные учёным принёс хребет Флиндерс (фото с сайта  bbc.co.uk) Новые данные учёным принёс хребет Флиндерс (фото с сайта bbc.co.uk)

Структуры типа HCS возникают на морском дне, когда над ним регулярно проходят крупные волны. Открытие означает, что в некоторых районах планеты даже в стертовское оледенение существовала не занятая льдами вода.

По мнению авторов статьи, вышедшей в журнале Geology, такие участки были оазисами, которые помогли биосфере пережить тяжёлый период. Хотя значительная часть жизни тогда была уничтожена, часть организмов перенесла и холод, и длительное заточение под мощным льдом, чтобы позже прийти к новому всплеску эволюции.

Как сообщает BBC, эта находка является важным кусочком мозаики в гипотезе "Земли-снежка" (Snowball Earth), получившей не так давно прямое подтверждение. Здесь ещё не до конца понятны причины столь сильного оледенения планеты, хотя учёные уже выяснили ряд интересных деталей последующего оттаивания.

О том, как жизнь могла сохраниться в течение эпох даже без света, рассказали необычный эксперимент с фототрофами и открытие древних бактерий в кровавом водопаде. Теперь же выясняется, что даже в самые суровые моменты криогения кое-где в океане оставались участки, дававшие микроорганизмам доступ к солнечным лучам и кислороду.


Источник: MEMBRANA


Опубликовано в Новости Палеонтологии

Животным понадобилось каких-то 85 млн лет (мгновение по геологическим меркам) на то, чтобы развиться и обжить бóльшую часть суши и океанов. Хотя ископаемые останки и молекулярная биология могут многое рассказать об этом процессе, наука по сей день не знает, что именно вызвало столь масштабную диверсификацию.

Земля была похожа на космический снежок... (Иллюстрация boogerfingers.) Земля была похожа на космический снежок... (Иллюстрация boogerfingers.) Биохимики Тимоти Лайонс и Ноа Планавский из Калифорнийского университета в Риверсайде (США) обосновали одну из гипотез.

В 1990-х годах сразу несколько научных групп пришли к выводу о том, что 750–635 млн лет назад практически вся поверхность Земли была покрыта льдом. В дальнейшем удалось показать, что путешественник во времени мог бы проложить лыжню от одного полюса до другого. Увеличиваясь в размерах, ледники соскребали верхний слой камня и почвы, а в ходе последующего отступления сбрасывали накопленные минералы и питательные вещества в океан.

Начало стремительного отступления ледников совпадает с резким всплеском эволюции животных. Г-да Лайонс и Планавский предположили, что если им удастся измерить количество фосфора в океане тех времён, то можно выяснить, есть ли корреляция между двумя этими событиями или же это простое совпадение. Именно фосфор считается главным питательным элементом микроорганизмов и водорослей, находящихся в основе пищевой пирамиды.

Ну а как восстановить историю концентрации фосфатов в океане за последний миллиард лет? Учёные сообразили, что можно использовать богатые железом отложения древних океанов с низким содержанием кислорода, которые накапливали фосфаты предсказуемым и хорошо изученным образом. Как и ожидалось, анализ семи образцов из различных частей мира показал, что концентрация фосфатов достигла своего пика во времена таяния ледников.

Это привело к росту водорослей и других организмов, производящих кислород, что стало залогом эволюционного взрыва.

Результаты исследования опубликованы в журнале Nature.


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Эволюции

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Выложен самый детальный 9Гп снимок Млечного Пути

29-10-2012 Просмотров:10542 Новости Астрономии Антоненко Андрей - avatar Антоненко Андрей

Выложен самый детальный 9Гп снимок Млечного Пути

Европейская Южная обсерватория выложила в открытом доступе свежую фотографию нашей галактики. Размеры кадра составили примерно 9 гигапикселей что соответствует разрешению 108200×81500 точек, но пусть это не пугает. ESО любезно предоставила онлайновую утилиту просмотра...

У муравьёв обнаружено разделение по зрению

10-10-2010 Просмотров:13012 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

У муравьёв обнаружено разделение по зрению

Энтомологи Австралийского национального университета установили, что у муравьёв-бульдогов (bull ant) с Зелёного континента зрение эволюционировало согласно делению по обязанностям. Исследователи выяснили, что внутри одного вида муравьёв деление на роли в колонии...

Ученые нашли в Канаде останки доисторического кузена "Чужого"

28-12-2017 Просмотров:2830 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Ученые нашли в Канаде останки доисторического кузена "Чужого"

Палеонтологи нашли на северо-западе Канады останки крайне необычного существа, похожего на "чужого" из одноименного фильма Ридли Скотта, которое может быть близким родственником предка всех пауков и клещей, говорится в статье, опубликованной в журнале BMC Evolutionary...

Названа птица с самым дальним ежегодным перелётом

11-10-2010 Просмотров:12073 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Названа птица с самым дальним ежегодным перелётом

Группа датских, исландских и американских орнитологов зарегистрировала самый дальний ежегодный перелёт в мире. Миниатюрная птичка "сделала" предыдущего чемпиона примерно на 7 тысяч километров. "Нынешние чемпионы передвигаются окольными путями, растянувшимися на тысячи...

Крадущаяся птица, притаившийся динозавр. Почему птицы сидят на корточках и…

25-04-2013 Просмотров:9047 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Крадущаяся птица, притаившийся динозавр. Почему птицы сидят на корточках и как это помогает им летать

Если присмотреться внимательнее практически к любой современной птице, можно заметить, что ее бедра расположены практически горизонтально. Почему появилась и как развивалась эта столь необычная для других животных поза, выяснили британские...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.