Мир дикой природы на wwlife.ru
Вы находитесь здесь:Новости>>Новости Метеорологии


Новости Метеорологии (41)

Последний большой ледниковый период начался около 120 тыс. лет назад. Один язык толщиной местами более трёх километров охватил практически всю Канаду и даже добрался до Манхэттена. Другой распространился по большей части Сибири и Северной Европы, остановившись лишь близ Лондона. Обширные районы превратились в тундры и пустыни, ибо на планете стало суше. Уровень моря опустился на 120 м ниже сегодняшнего: Великобритания и Ирландия были частью континентальной Европы, Австралия, Тасмания и Новая Гвинея составляли единый материк под названием Сахул.

Первый этап великой оттепели: в Северном полушарии становится чуть более солнечно, и в Атлантику попадает огромное количество талой воды. (Здесь и ниже инфографика NewScientist.)Первый этап великой оттепели: в Северном полушарии становится чуть более солнечно, и в Атлантику попадает огромное количество талой воды. (Здесь и ниже инфографика NewScientist.)Затем, около 20 тыс. лет назад, началась великая оттепель. В течение 10 тыс. лет среднемировая температура выросла на 3,5 ˚C, и основная часть льда растаяла. Низменные районы затопило: образовались Ла-Манш и Северное море, нашим предкам пришлось покинуть поселения, бывшие некогда прибрежными.

В чём же причина столь резкой трансформации планеты?

В 1830-х годах один из основоположников гляциологии Луи Агассис заметил, что характерные следы движения ледников (например, царапины на породе и эрратические валуны — камни, которые оттащило далеко от места происхождения) можно обнаружить вдали от современных ледников. Вскоре стало ясно, что планета пережила целый ряд ледниковых периодов

Второй этап: талая вода останавливает Атлантическую циркуляцию, Север замерзает, на Юге теплеет ещё сильнееВторой этап: талая вода останавливает Атлантическую циркуляцию, Север замерзает, на Юге теплеет ещё сильнееЧто заставляло лёд приходить и уходить? В 1864 году шотландский климатолог Джеймс Кролл выдвинул гипотезу о том, что изменения в количестве солнечного света, достигающего Земли, связаны с колебаниями орбиты планеты. Он также предположил, что это влияет на механизмы обратной связи: теплоотражающие снег и лёд тают, меняются морские течения.

Кролл ошибся во многих деталях, но был на верном пути. В начале XX века сербский астроном Милутин Миланкович рассчитал изменения орбиты Земли за 600 тыс. лет и пришёл к выводу, что именно увеличение яркости летнего солнца в Северном полушарии становилось главным фактором потепления. Современники не приняли эту идею, и лишь в 1970-х исследования донных отложений показали, что наступление и окончание ледниковых периодов совпадает с так называемыми циклами Миланковича.

Но это не решило всех загадок. Начать с того, что вариативность солнечного излучения, достигающего планеты, невелика. Даже если учесть, что в результате таяния снега и льда Земля поглощает больше тепла, этим нельзя объяснить окончание ледникового периода. Более того, когда летнее солнце становится ярче в Северном полушарии, Южное получает меньше излучения. Кстати, Кролл из-за этого предположил, что когда север замерзает, то юг оттаивает, и наоборот. Но в действительности весь мир нагревается примерно в одно и то же время.

Казалось, разгадку удалось получить в 1980-х годах, когда керны льда Антарктиды показали удивительно сильную корреляцию между атмосферным уровнем углекислого газа и температурой. Если в Северном полушарии вскоре после начала оттепели стала расти концентрация углекислого газа, этим можно объяснить потепление и в Южном. Однако примерно десять лет назад стало ясно, что Антарктика начала нагреваться за несколько сотен лет до роста уровня двуокиси углерода. Выходит, что, хотя углекислый газ, без сомнения, внёс вклад в парниковый эффект, он не был первопричиной.


Источник: КОМПЬЮЛЕНТА


Когда экологи рассуждают об изменении климата, они обычно отмечают, что будут не только проигравшие, но и победители. Одни виды вымрут, другие мигрируют и займут их место или адаптируются к новым условиям. По большому счёту никто не предсказывает полного опустошения экосистем.

Информацию для анализа предоставили горы южного Китая. (Фото ASU.edu.)Информацию для анализа предоставили горы южного Китая. (Фото ASU.edu.)Однако новое исследование показало, что однажды на нашей планете стало так жарко, что на экваторе установилась смертельно высокая температура. Выжили немногие — в основном, чахлые беспозвоночные.

В целом начало триаса было не самым приятным временем. Предыдущий геологический период (пермь) завершился масштабными извержениями, которые привели к образованию сибирских траппов и крупнейшему в истории вымиранию. Вулканы выбросили в атмосферу огромное количество углекислого газа, и выжившие столкнулись с парниковым эффектом, а также нехваткой кислорода в океане.

Насколько интенсивным было потепление? Авторы исследования попытались выяснить это путём анализа соотношения изотопов кислорода в ископаемых из южного Китая, который в то время находился вблизи экватора в восточной части Пангеи, покрытой мелкими морями океана Тетис.

Выяснилось, что за 800 тыс. лет эпохи Великого вымирания средняя температура воды в этом районе выросла с 21 до 36 ˚C. Затем последовал спад, после которого потепление началось с новой силой и температура достигла по меньшей мере 38˚, а возможно, и превысила 40˚. Напоминаем, что речь идёт о воде. На суше, скорее всего, дела шли ещё хуже.

Немногие растения способны существовать в таких условиях. До предела выживаемости животных тоже рукой подать. Следует учесть и то, что при этом сократилось количество кислорода, растворённого в воде.

Дабы не строить пустые гипотезы, авторы обратились к базам данных ископаемых находок той эпохи. Оказалось, что экваториальные области раннего триаса были практически необитаемы, тогда как в других местах планеты жизнь потихоньку приходила в себя. Рыбы были распространены на многих широтах, но в районе экватора встречались очень редко. А их четвероногие родственники (наземные позвоночные) вообще отсутствовали между 30˚ с. ш. и 40˚ ю. ш., как и красные водоросли. Месторождения угля, относящиеся к той эпохе, скудны, что тоже свидетельствует о больших проблемах с жизнью на нашей планете.

А кто же жил? Кое-какие морские беспозвоночные. Они были настолько меньше своей нормы, что учёные говорят об эффекте карликовости. Который, впрочем, присутствовал только в экваториальных областях. В более высоких широтах преобладал нормальный размер.

Отсюда вывод о том, что глобальное потепление сильно усложнило процесс восстановления жизни после Великого вымирания. Тот, кто не смог мигрировать, скорее всего, исчез.

Результаты исследования опубликованы в журнале Science.


Источник: КОМПЬЮЛЕНТА


Среди новостей о нагревающейся планете, тающем морском льде и росте уровня моря внезапно появился лучик света: этой зимой (в Южном полушарии) морской лёд Антарктики заметно увеличил вою площадь.

Область распространения морского льда вокруг Антарктиды по состоянию на 26 сентября. Жёлтая линия отмечает средний показатель сентября с 1979 по 2000 год. (Изображение Jesse Allen, EO / NASA / NSIDC.)Область распространения морского льда вокруг Антарктиды по состоянию на 26 сентября. Жёлтая линия отмечает средний показатель сентября с 1979 по 2000 год. (Изображение Jesse Allen, EO / NASA / NSIDC.)В конце сентября спутники показали, что Антарктида окружена самой большой областью морского льда за всю историю наблюдений — 19,44 млн км², сообщает Национальный центр данных по исследованию снега и льда (США). Но даже в этом случае лёд растёт слишком медленно (в прошлом году он прибавил приблизительно 1%), чтобы компенсировать таяние в Арктике, побившее все рекорды несколько недель назад.

Исследователь НАСА Эрик Ригнот из Калифорнийского университета в Ирвайне (США) поясняет, что мир нагревается неодинаково. Антарктика остаётся самым холодным местом планеты: там теплеет не так быстро, как в других регионах. Разница температур между Антарктикой и остальным земным шаром увеличивается, а потому растёт и скорость ветров вокруг неё. Играет роль и истощение озона над Антарктидой, из-за чего стратосфера там холоднее обычного. Но все эти факторы не отменяют потепления на самом южном континенте планеты.

Следует также понимать, что рост морского льда не оказывает никакого влияния на уровень моря, потому что морской лёд и так плавает в океане. Замерзает морская вода, и неважно, жидкая она или твёрдая: уровень моря остаётся прежним.

Разница же между тем, чтó происходит в Арктике и Антарктике, объясняется тем, что на Южном полюсе есть континент, тогда как на Северном — лишь океан. В Арктике теплеющая атмосфера вовсю нагревает море, лёд отступает, обнажая ещё больше океана, тот ещё сильнее поглощает тепло и т. д. Антарктида же обладает собственной климатической системой. Это большой континент, изолированный от остальной части мира не только водой, но и ветрами, дующими вокруг него по часовой стрелке, тогда как Арктика вписана в климатическую систему Северного полушария.

Вот и выходит, что радоваться не стоит. Происходящее в Антарктике согласуется с научным представлением о том, как нагревается планета. Есть, конечно, детали, которые невозможно предсказать, но они носят региональный характер. Общая тенденция распада морского ледяного покрытия, ледовых щитов Гренландии и континентальных ледниковых покровов не противоречит прогнозам.

 


 

Источник: КОМПЬЮЛЕНТА


 

Ветра, дующие на высоте 15-30 километров, могут воздействовать на течения на глубине полутора километров.

Открыта связь между «полярной воронкой» и течениями АтлантикиАмериканские ученые из Университета Юты в Солт-Лейк-Сити смогли доказать,что периодические изменения скорости полярных ветров в стратосфере оказывают влияние на океанические течения и, тем самым, на климат Земли. Результаты исследования опубликованы в журнале Nature Geoscience.

Ранее климатологи высказали предположение, что климат нашей планеты зависит не только от тропосферы, нижнего слоя атмосферы, но и от стратосферы, разреженной прослойки воздуха на высоте от 11 до 50 километров. Чтобы проверить эту гипотезу, авторы работы проанализировали данные метеорологических наблюдений за последние 30 лет.

Оказалось, что раз в два года стратосфера внезапно теплеет, так что при этом изменяется характер «полярной воронки», образованной кольцом сильных ветров на уровне 60-го градуса северной широты. В норме эти ветра дуют со скоростью 130 километров в час и движутся против часовой стрелки. Однако в периоды потеплений ветра становятся менее интенсивными и начинают дуть в противоположном направлении.

Исследователи смогли показать, что подобные изменения, занимающие в среднем 60 дней, влияют на режим работы атлантической меридиональной циркуляции, системы поверхностных теплых и глубинных холодных течений. Так, в 1980-е и 2000-е годы периодические ослабления «полярной воронки» снижали температуру воды в Атлантическом океане на 0,1 градуса, воздействуя на течения на глубине до 1,5 километров.

Результаты компьютерного моделирования (авторы статьи сопоставили 18 существующих климатических моделей) подтвердили выводы ученых. «Периодические изменения «полярной петли» создают возмущения на поверхности океана, которые передаются более глубоким его слоям, влияя тем самым на характер циркуляции»,-- пояснил Томас Райшлер, руководитель исследования.


Источник: infox.ru


 

Эксперты Всемирной метеорологической организации (ВМО) официально признали недействительным установленный 90 лет назад в Ливии рекорд самой высокой температуры воздуха в мире - 58 градусов  Цельсия, по заключению ученых, рекордная температура была измерена с ошибкой.

Фото: Ilya GreenФото: Ilya Green"Теперь официальный статус самого жаркого места в мире принадлежит национальному  парку "Долина смерти" в Калифорнии, США, что имеет такое же важное значение для  метеорологов, как и гора Эверест для географов", - говорится в сообщении ВМО.

Как считалось до сих пор, исторический максимум температуры приземного  воздуха был зафиксирован ровно 90 лет назад, 13 сентября 1922 года в ливийском  городке Эль-Азизия в 40 километрах к югу от Триполи. Измеренное тогда значение - 58,0 градуса Цельсия - стало самой высокой температурой с начала регулярных  измерений в 1880 году и до настоящего времени.

Данные, полученные итальянской метеостанцией, были признаны во всем мире как  рекорд температуры. Однако в 1950-х годах некоторые ученые после изучения  архивных записей, метеорологических приборов и климатических особенностей "полюса жары" высказывали сомнение в его истинности. Некоторые, в частности, полагали, что настоящее значение температуры в Аль-Азизии составляло около 56 градусов.

С 2010 года комитет ВМО, состоящий из экспертов-климатологов из Ливии, Италии, Испании, Египта, Франции, Марокко, Аргентины, США и Великобритании вел  тщательное расследование обстоятельств, при которых была измерена рекордная  температура.

Результаты исследования, проведенного в опасных условиях в ходе ливийской  революции 2011 года, показали, что ошибка в измерении составила около 7 градусов.

Оценочный комитет ВМО пришел к заключению, что в 1922 году наблюдения  проводил неопытный наблюдатель, не обученный работе с прибором, "показания  которого могли быть легко неправильно истолкованы и неправильно занесены в  журнал наблюдений".

В результате Мировой архив  экстремальных метеорологических и климатических явлений, поддерживаемый  Комиссией ВМО по климатологии, признал недействительным экстремальное значение  температуры в 58 градуса, измеренное в Эль-Азизии в 1922 года. Теперь  официальным рекордом самой высокой приземной температуры стало значение 56,7 градуса, которое было зарегистрировано 10 июля 1913 года в Гринлэнд-Рэнче (Долина смерти) в Калифорнии (США).

"Это исследование показывает, что благодаря постоянным усовершенствованиям в  метеорологии и климатологии эксперты-климатологи могут теперь проводить  повторный анализ прошлых метеорологических данных гораздо более подробно, чем  когда-либо. В результате мы получаем улучшенный комплект климатических данных  для анализа важных глобальных и региональных вопросов, связанных с изменчивостью  и изменением климата", - отметил Рэндалл Сервени (Randall Cerveny), докладчик  ВМО по климатическим и метеорологическим экстремальным явлениям.


Источник: РИАНОВОСТИ


 

Считалось, что сильные ураганы лишь останавливают рост аэродинамической шероховатости океана (сопротивления ветру), однако новое исследование уточняет: на самом деле при очень высокой скорости ветра брызги и пена создают своего рода защитное покрытие, которое позволяет воздуху скользить по волнам почти без трения.

Пена и брызги, покрывающие поверхность океана при сильных ураганах, снижают коэффициент лобового сопротивления. (Фото NOAA / Peter Black.)Пена и брызги, покрывающие поверхность океана при сильных ураганах, снижают коэффициент лобового сопротивления. (Фото NOAA / Peter Black.)Эту неожиданность следует учесть в компьютерных моделях ураганов, подчёркивают учёные.

Специалисты из Нидерландов и США проанализировали данные, полученные особым самолётом, который бесстрашно бросался на бури в 1998−2005 годах. Кроме того, рассмотрена киносъёмка поверхности океана с низких высот во время ураганов 1966−1980-го. Более трети из этих данных никогда не публиковалось, и многие из них невозможно получить сегодня, ибо текущие правила безопасности запрещают полёты в подобных условиях, поясняет Лео Холтхёйсен из Делфтского технологического университета (Нидерланды).

Аэродинамическая шероховатость поверхности измеряется с помощью коэффициента лобового сопротивления. Это трение, делённое на площадь поверхности. Исследователи обнаружили, что при скорости ветра менее 35 м/с (около 126 км/ч, ураган 1-й категории) коэффициент лобового сопротивления, как и ожидалось, рос соразмерно увеличению скорости ветра. Но при скорости ветра до 40 м/с (144 км/ч) пена и брызги сформировали нечто вроде сплошной пелены, и коэффициент лобового сопротивления стал падать.

К тому моменту, когда скорость ветра достигает 80 м/с (288 км/ч, 5-я категория), коэффициент лобового сопротивления резко падает практически до нуля. В этих условиях высота волн достигает 20−30 м, и ветер просто перепрыгивает через впадины между ними.

Снижение коэффициента аэродинамического сопротивления при высоких скоростях ветра даёт значительный эффект. Когда поверхность становится аэродинамически гладкой, ветер не способен передать воде большой импульс, поэтому волны не могут быть выше, чем предсказывают модели.

Результаты исследования опубликованы в Journal of Geophysical Research — Oceans .


Источник: КОМПЬЮЛЕНТА


 

Возможно, вы уже видели графики , составленные благодаря кернам антарктического льда, — своего рода кардиограммы ледниковых периодов. Если да, то, скорее всего, вы отметили их циклический характер: примерно сто тысяч лет оледенения, затем относительно короткое межледниковье, и вновь постепенное охлаждение охватывает планету. Причина — в небольших и ритмичных колебаниях орбиты Земли, которые изменяют количество солнечного света, получаемого нашим домом.

Шельфовый ледник Ларсена у побережья Антарктического полуострова (фото Jim Yungel / NASA)Шельфовый ледник Ларсена у побережья Антарктического полуострова (фото Jim Yungel / NASA)Климатологи, однако, давно заметили ряд странностей на этих графиках. Почему именно сто тысяч лет? Действительно, есть орбитальный цикл, занимающий столько времени, но есть и другие: один укладывается примерно в 20 тыс. лет, ещё один — в 41 тыс. И потом, стотысячелетний цикл на самом деле меняет положение дел меньше остальных. Так почему именно он управляет биением ледяного сердца Земли?

Предложено немало хороших ответов на этот вопрос, но возникает другая тайна. Стоит взглянуть на миллион лет в прошлое, и кардиограмма меняется . Нормой становится цикл в 41 тыс. лет. Здесь тоже есть несколько гипотез, но проверить их было затруднительно за недостатком данных.

Кое-какие пробелы удалось восполнить новому исследованию, проведённому сотрудниками Кембриджского университета (Великобритания). Они реконструировали 1,5 млн лет истории климата, записанных в морских отложениях у восточного побережья Новой Зеландии. Как принято в таких случаях, учёные измерили состав изотопов кислорода в карбонатных оболочках одноклеточных фораминифер .

Дело осложняется тем, что изотопы кислорода в этих «раковинах» откликаются на различные факторы. С одной стороны, соотношение изотопов в океане меняется в связи с замерзанием воды в континентальных ледниковых щитах и понижением уровня моря. С другой — температура морской воды тоже влияет на химический состав оболочки фораминифер.По старым данным, ледниковые циклы внезапно изменились около 400 тыс. лет назад. Новое исследование говорит о том, что это произошло 900 тыс. лет назад. (Изображение Wikimedia Commons.)По старым данным, ледниковые циклы внезапно изменились около 400 тыс. лет назад. Новое исследование говорит о том, что это произошло 900 тыс. лет назад. (Изображение Wikimedia Commons.)

Чтобы разобраться в этой путанице, обычно ищут такой «датчик», который фиксировал бы только температуру. Здесь в этой роли выступило отношение магния к кальцию (магний может занимать место кальция в карбонатных оболочках). Если вычесть сигналы, относящиеся к изменениям температуры, останутся только данные об объёме льда.

Метод не нов, но его едва ли не впервые удалось применить к тем ледниковым циклам, которые охватывали 41 тыс. лет, а не 100 тыс. Предыдущие исследования, которые не могли отличить воздействие температурных изменений от снижения уровня моря, говорили о том, что переход осуществлялся постепенно: на протяжении 500 тыс. лет периоды оледенения становились всё более холодными. А по новым данным, произошёл внезапный скачок объёма льда, достигший максимума около 900 тыс. лет назад. Вот с тех пор ледниковые периоды придерживаются стотысячелетнего цикла.

В этом и кроется объяснение перехода на новый режим. Достигая определённого размера, ледяные покровы становятся более устойчивыми, поскольку вершины ледников оказываются на большой высоте, где температура ниже, чем на поверхности планеты. Именно поэтому ледниковый щит способен выдержать те орбитальные толчки к потеплению, которые характерны для цикла в 41 тыс. лет.

Предыдущие исследования в основном концентрировались на Северной Атлантике. Поскольку новые данные отличаются от прежних результатов, имеет смысл предполагать, что антарктический ледяной покров не шёл в ногу с Северным полушарием.

И есть все основания думать, что именно Антарктика «переключила» Землю. В Южном полушарии рост количества входящего солнечного излучения в конце оказавшегося последним 41-тысячелетнего периода был очень слабым, что позволило льду Антарктики избежать обычного таяния, а затем вырасти до нового максимума.

Результаты исследования опубликованы в журнале Science .


Источник: КОМПЬЮЛЕНТА


 

SpritesНедавно удалось провести одну из самых результативных съёмок спрайтов — уникальных молний, возникающих там, где их не должно быть, и демонстрирующих то, чего с молниями у поверхности быть не может.

Эти кадры, уверяют в НАСА, очень важны для выяснения природы спрайтов. Не в последнюю очередь потому, что снять такие события на видео исключительно сложно и удаётся это редко.

Спрайты — явление и впрямь загадочное, даже, пожалуй, загадочнее пресловутых беззвучных молний Кататумбо. Более или менее точно можно сказать только то, что это редкий вид грозовых разрядов, бьющих в мезосфере и термосфере. Пока их регистрировали на высотах от 50 до 130 км. А узнали об их существовании только в конце 80-х. Хотя в длину спрайты могут тянуться на 60 км, а в диаметре достигают 100 км, по форме напоминая воронки, длятся они обычно от 10 до 100 мс.

Ещё до 80-х (то есть до обнаружения спрайтов) спутники делали десятки снимков этого явления. Но специфика орбитальных сессий в том, что они дают очень много материала, который попросту некому разбирать со всем тщанием, оттого и открыть спрайты удалось лишь случайно — при помощи скоростной камеры.

По цвету они весьма необычны: до 70 км — красные, а ниже напоминают нормальные молнии — становятся синими. Объясняется это тем, что электрический разряд в азотной среде даёт именно красный цвет, а чем больше кислорода в атмосфере (выше 70 км давление низко, а кислорода мало), тем ближе цвет разряда к синему.Sprites1

Физическая природа спрайтов загадочна. Выше 16 км нормальные молнии не возникают. А ниже 50 км не бывает спрайтов! Кроме того, по итогам наблюдений известно, что спрайты появляются над районами очень сильных гроз в тропосфере. То есть они явно связаны с более низкими слоями атмосферы. Но почему тогда в стратосфере, между нижними и верхними молниями, почти никогда ничего нет? Голубые джеты, «связывающие» обычные молнии и красные спрайты, возникают очень редко, намного реже самих красных спрайтов.

Основная гипотеза о природе этого необычного явления такова: в норме при ударе молнии электроны из нейтральной в целом тучи уходят вниз, унося отрицательный заряд. А вверху облака остаётся положительный. Иногда (один раз из десяти, при особо сильных разрядах) всё, по неясным причинам, происходит наоборот: положительный заряд движется к земле, а отрицательный, предположительно, устремляется вверх, образуя спрайт.

По словам специалистов НАСА, исследование спрайтов может серьёзно улучшить не только понимание явлений, происходящих в мезосфере в целом, но и прояснить некоторые неясности с механизмом образования молний, до сих пор затрудняющие адекватное прогнозирование интенсивности грозовых разрядов и потенциального ущерба от них.

 


Источник: КОМПЬЮЛЕНТА

 


 

Два миллиона лет назад температура Индийского и Тихого океанов сильно изменилась. Помимо прочего, это привело к сдвигу картины осадков в Восточной Африке. В результате на смену лесным массивам пришли пастбища, и число обитавших там видов заметно увеличилось, появились условия для появления предков современных антилоп, лошадей и др.

Голубые гну в Нгоронгоро (фото Mikel Hendriks)Голубые гну в Нгоронгоро (фото Mikel Hendriks)На сей счёт предложено несколько гипотез, рассказывает автор исследования Питер Деменокаль из Колумбийского университета (США). Среди них — охлаждение Северной Атлантики, снижение содержания в атмосфере углекислого газа и рост вулканической активности. Однако ни одна из них не смогла предложить полного объяснения событий в Восточной Африке.

Г-н Деменокаль сфокусировался на перепадах температуры океана вдоль экватора. Именно они определяют сегодняшнюю картину осадков. На западе экваториальной части Тихого океана (в районе Борнео) и восточной — Индийского (близ северо-западного побережья Австралии) сконцентрированы тёплые воды. Они притягивают к себе дожди, тогда как в древности полоса осадков была почти равномерно распределена по всему Индийскому океану от Восточной Африки до Австралии.

Исследовательская группа рассмотрела данные о температуре поверхности Индийского океана и сравнила их со сведениями, почерпнутыми из образцов поднятых со дна Тихого океана пород.

Выяснилось, что более 2 млн лет назад температура Индийского океана была примерно одинаковой по всей его территории — 27–28 ˚C. А около 2 млн лет назад западная часть океана близ Аравийского моря остыла до 25 ˚C, тогда как восточная — возле северо-западного побережья Австралии — потеплела до 28–29 ˚C. Аналогичную картину исследователи обнаружили в Тихом океане — только запад, напротив, потеплел, а восток остыл. В это же время поменялась картина осадков над Восточной Африкой.

Затем г-н Деменокаль и его коллеги запустили климатические модели, в которых не было разницы между температурой Индийского и Тихого океанов. В этом случае дожди над Восточной Африкой усиливались.

Результаты исследования были представлены на конференции Американской ассоциации содействия развитию науки.

 


Источник: КОМПЬЮЛЕНТА

Первые растения, заселившие сушу, не просто оживили серый доисторический пейзаж. Они резко ускорили естественный распад обнажённых пород и выкачали столько диоксида углерода из атмосферы, что климату оставалось лишь скатиться в обширный ледниковый период.

Около 455 млн лет назад оледенение, возможно, вызвали растения, подобные этим современным мхам. (Фото Michael Lüth / USDA.)Около 455 млн лет назад оледенение, возможно, вызвали растения, подобные этим современным мхам. (Фото Michael Lüth / USDA.)Около 460 млн лет назад атмосферная концентрация СО2 была в 14–22 раза выше сегодняшней, а среднемировая температура — примерно на 5 ˚С (Солнце в то время светило на 6% слабее, поэтому парниковые газы не имели нынешнего эффекта). Климатические модели показывают, что сильное оледенение в ту эпоху могло произойти только в том случае, если уровень СО2 снизился где-то в восемь раз. Именно это и обнаружил Тим Лентон из Эксетерского университета (Великобритания).

Около 455 млн лет назад на Земле начался период, продолжавшийся примерно 10 млн лет, в течение которого планета пережила два больших оледенения. В то время суперконтинент Гондвана находился в районе Южного полюса — там или примерно там, где сейчас Антарктида. В самый разгар оледенения основная часть суперконтинента, в том числе области, которые сейчас составляют Африку и Южную Америку, были покрыты льдом. Это, возможно, сыграло большую роль в массовом вымирании видов, которые перед этим процветали в мелководных морях, омывавших сушу.

Учёных уже давно удивляют те морозы. Химическое выветривание силикатных пород (то есть реакции, протекающие между обнажениями пород и кислыми дождями или кислородом, а также другими атмосферными газами) чересчур медленно выводило углекислый газ из атмосферы. Нынешние геохимические модели показывают, что этот процесс не объясняет два внезапных оледенения.

Г-н Лентон и его коллеги предполагают, что причина — в эволюции сухопутных растений, и у них есть тому лабораторное подтверждение. Учёные поместили образцы гранита и андезита — обыкновенных силикатных пород, охлаждённых из расплавленного материала, — в герметичные сосуды вместе с современными видами мха и оставили на 130 дней. Считается, что мхи похожи на первые сухопутные растения, поскольку не имеют так называемых сосудистых тканей, отвечающих за циркуляцию воды по всему организму. Такие бессосудистые растения могли существовать лишь во влажной среде. В другой набор ёмкостей были помещены только породы и вода.

Наличие мха увеличило выветривание кальция из андезитов в 3,6 раза, а магния — в 5,4. Исследователи ввели эти цифры в модели, которые предполагали, что сухопутные растения покрывали более 15% земной поверхности (приблизительно столько занимают сегодня водно-болотные угодья, которые прекрасно подходят мху). Получилось, что за 15 млн лет (475–460 млн лет назад) уровень CO2 должен был упасть примерно в 8,4 раза. Этого достаточно для сильного оледенения.

    В лабораторных экспериментах мох также увеличил скорость выветривания железа и фосфора из гранита — в 60 и 170 раз соответственно. Поступление этих питательных веществ должно было привести к усилению роста растений на суше, хотя значительная часть этих веществ, скорее всего, оказалась в морях и была усвоена водорослями в мелкой воде. Это объясняет две другие геологические аномалии той эпохи — большое количество прибрежных сланцевых отложений, богатых органикой, и необычайно высокую долю углерода-13 в горных породах.

    Если первое из оледенений, вероятно, было вызвано бессосудистыми растениями вроде мхов и печёночников, то второй ледниковый период, который начался около 445 млн лет назад, возможно, стал результатом возникновения и распространения сосудистой флоры. Она не была ограничена влажной средой и могла выкачать углекислый газ из атмосферы ещё быстрее, появившись всего около 450 млн лет назад.

    Результаты исследования опубликованы в журнале Nature Geoscience.

 


Источник:  КОМПЬЛЕНТА


 

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Биологи впервые сняли на камеру прыжки быстрейших насекомых в мире

06-03-2015 Просмотров:6814 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Биологи впервые сняли на камеру прыжки быстрейших насекомых в мире

Британские ученые впервые получили фотографии и замедленные видеозаписи того, как прыгают молодые богомолы, что помогло им раскрыть невероятную скорость, точность и просчитанность их пируэтов, говорится в статье, опубликованной в журнале Current Biology. Прыжок богомола"Этот подвиг подобен тому,...

У кембрийского иглокожего обнаружена пятилучевая симметрия

26-06-2013 Просмотров:10182 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

У кембрийского иглокожего обнаружена пятилучевая симметрия

В Марокко обнаружено сигарообразное существо, жившее около 520 млн лет назад.  Вымерший вид Helicocystis moroccoensis обладает «характеристиками, которые делают его наиболее примитивным иглокожим с пятикратной симметрией», отмечает соавтор исследования Эндрю Смит из Музея...

Антропологи выяснили, как охотились неандертальцы

25-01-2019 Просмотров:2491 Новости Антропологии Антоненко Андрей - avatar Антоненко Андрей

Антропологи выяснили, как охотились неандертальцы

Профессиональные копьеметатели помогли ученым доказать, что древнейшие копья неандертальцев, найденные два десятка лет назад в Германии, могли легко убивать животных средних размеров. Результаты их "полевых испытаний" были представлены в журнале...

Палеонтологи восстановили облик гигантского хищного червя

29-01-2021 Просмотров:1932 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Палеонтологи восстановили облик гигантского хищного червя

Ученые нашли доказательства существования гигантского червя-хищника, который буквально колонизировал морское дно двадцать миллионов лет назад. Результаты исследования опубликованы в журнале Scientific Reports. Хотя морские черви существуют с раннего палеозоя, их тела,...

Ученые выяснили, почему голые землекопы не чувствуют боли

12-10-2016 Просмотров:5829 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Ученые выяснили, почему голые землекопы не чувствуют боли

Капские голые землекопы, грызуны, победившие смерть, почти не чувствуют боли по той причине, что их ген, отвечающий за "включение" болевых рецепторов, отличается по своей структуре всего на одну букву от аналогичных генов человека и других млекопитающих,...

top-iconВверх

© 2009-2024 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.