Версия для печати
Суббота, 22 Сентябрь 2012 13:21

Эпигенетическими модификациями ДНК растений управляют малые регуляторные РНК

Автор 

Учёным удалось отчасти понять, как растениям удаётся передавать эпигенетический код из поколения в поколение.

Схематический портрет молекулярного комплекса ДНК и фермента ДНК-метилтрансферазы (рисунок Laguna Design)Схематический портрет молекулярного комплекса ДНК и фермента ДНК-метилтрансферазы (рисунок Laguna Design)Про эпигенетический код наука знает давно, но как он передаётся, до сих пор остаётся во многом загадкой. Известно, к примеру, что у млекопитающих все эпигенетические маркеры в половых клетках удаляются. У растений определённые эпигенетические модификации при образовании пыльцы исчезают, но после оплодотворения появляются на прежнем месте.

Исследователям из Лаборатории в Колд-Спринг-Харборе (США) удалось отчасти понять, как это происходит по крайней мере у растений. Их пыльцевое зерно образовано двумя клетками — генеративной, из которой потом образуются два спермия, и вегетативной, которая сама никого не оплодотворяет, но помогает этому процессу. Вегетативная и генеративная клетки образуются из общего предшественника. Учёные проанализировали эпигенетический статус ДНК созревающей пыльцы на разных стадиях. Как и ожидалось, клетки-предшественницы вегетативной и генеративной клеток имели существенные различия в метильном эпигенетическом узоре.

Присоединение метильных групп к ДНК — один из важнейших элементов эпигенетического кода — подавляет активность генов. Учёные выяснили, что в растительной пыльце этим процессом руководят малые интерферирующие РНК. Напомним, что обычная сфера деятельности этих молекул — процессы трансляции. Именно на этом этапе они обычно вмешиваются, подавляя синтез белка на матричной РНК. Но, как видно, малым интерферирующим РНК до всего есть дело. Небольшие молекулы РНК, длиной всего в 21 и 24 нуклеотида, служили проводниками для ферментов, выполняющих метилирование ДНК.

В статье, опубликованной в журнале Cell, авторы пишут, что зоны в ДНК, которые то приобретали, то теряли метильные группы, часто содержали транспозоны. Транспозонами называют мобильные элементы ДНК, которые обладают определённой самостоятельностью: они могут буквально «перепрыгивать» из одного участка генома в другой. В интересах клетки держать эти мобильные элементы под контролем, так как они могут влезть куда не следует и вызвать опасную мутацию, изменив последовательность гена.

Один из способов контроля транспозон — держать их метилированными. В связи с этим авторы работы делают любопытный вывод о том, что регуляция метилирования ДНК у растений произошла от древнего молекулярного механизма, который следил за активностью транспозонов в клетке. Эти регуляторные малые РНК вычленились в прошлом из транспозонных элементов, и теперь они водят к ним ферменты, которые подавляют активность их опасных «предков». Более того, некоторые гены, которые должны молчать в ходе развития зародыша, окружены транспозонными последовательностями: метилирующие ферменты, подавляющие активность транспозонов, заодно запечатывают и эти гены.

Таким образом, для передачи метильного кода в следующие поколения растения используют механизмы сдерживания мобильных элементов ДНК- и РНК-интерференции. Животные в этом смысле оказались менее изощрёнными: метильный узор, который сохраняется в ДНК в течение всей жизни, при формировании половых клеток исчезает без шансов на восстановление в следующем поколении.


Источник: КОМПЬЮЛЕНТА


Прочитано 9994 раз

Похожие материалы (по тегу)

Авторизуйтесь, чтобы получить возможность оставлять комментарии