Версия для печати
Суббота, 15 Июнь 2013 10:37

Упругая деформация крыльев насекомых запасает энергию для резких маневров

Автор 

Науку всегда волновало, как летучие живые существа запасают нужное количество энергии. Ведь для многих из них КПД полёта не превышает 10% (особенно это касается насекомых). И главное: в моменты резкого ускорения (включая взлёт) потребность в энергии для взмахов крыльями резко возрастает и начинает превышать ту, что, согласно общему анализу энергобаланса насекомых, есть в их распоряжении.

Бражник табачный в полёте, а также изображения, полученные рассеиванием рентгеновского излучения на его крыльях сразу после искусственной стимуляции движущих их мышц. (Иллюстрации N. George et al.)Бражник табачный в полёте, а также изображения, полученные рассеиванием рентгеновского излучения на его крыльях сразу после искусственной стимуляции движущих их мышц. (Иллюстрации N. George et al.)Где они берут ту прорву энергии, которая необходима для полёта в моменты резкого набора скорости?!

Том Дэниэл (Tom Daniel) и его коллеги по Вашингтонскому университету (США) полагают, что подобралась к ответу на этот вопрос.

Применив в качестве модельного организма бражника табачного (Manduca sexta), его подвергли рентгеновскому облучению под малым углом к поверхности движущихся крыльев. Температурная разница между спинной и брюшной сторонами крыла оказалась достаточно значимой, чтобы запасать в крыле энергию упругих деформаций, оставляя её в более холодных частях мускула и затем высвобождая при переходах между сокращением и расслаблением.

Это позволяет снизить нагрузку на крыло при резком разгоне и торможении: упругая деформация как бы растягивает во времени процесс резкого ускорения, что снижает общие энергозатраты на него. Между тем именно периоды самого быстрого изменения скорости считаются наиболее энергоёмкими при любых перемещениях.

Описанные результаты следовали из снимков, сделанных и при 25, и при 35 °C на протяжении 100 циклов (по 8 мс) подряд. По мере того как белок актин скользит по миозину (вы не поверите — тоже белок) в мышцах, их взаимодействие рождает силу, и чем выше температура этих межмолекулярных взаимодействий, тем больше эта сила. Замеры показали, что разница температур брюшной и спинной сторон крыла в полёте может достигать 6,9 °C!

Рассеивание рентгеновских лучей на мышцах крыла бражника позволило буквально увидеть, что происходит внутри насекомого во всём диапазоне рабочих для него температур, то есть от 25 до 35 °C. Оказалось, что циклы скольжения актина по миозину в самом деле меняются по скорости в строгом соответствии с ожиданиями — прямо пропорционально росту температуры.

Таким образом, на нижней по отношению к набегающему потоку части крыла мускулы теплее, а потому работают активнее, в то время как верхняя остаётся более прохладной. Разница между этими частями несущей плоскости порождает упругую деформацию, которая помогает мышце крыла начать следующий цикл сокращения или сжатия.

Как отмечают исследователи, выявление этого механизма может оказаться важным для понимания не одного только полёта насекомых, но и вообще локомоции живых существ.

Отчёт об исследовании опубликован в журнале Science.

 


 

Источник: КОМПЬЮЛЕНТА


 

Прочитано 9637 раз

Похожие материалы (по тегу)

Авторизуйтесь, чтобы получить возможность оставлять комментарии